In Korea, most industrial parks and major cities are located in coastal areas, which results in serious environmental problems in both coastal land and ocean. In order to effectively manage such problems especially in coastal ocean, water quality should be monitored. As there are many factors that influence water quality, the Korean Government proposed an integrated Water Quality Index (WQI) based on in situmeasurements of ocean parameters(bottom dissolved oxygen, chlorophyll-a concentration, secchi disk depth, dissolved inorganic nitrogen, and dissolved inorganic phosphorus) by ocean division identified based on their ecological characteristics. Field-measured WQI, however, does not provide spatial continuity over vast areas. Satellite remote sensing can be an alternative for identifying WQI for surface water. In this study, two schemes were examined to estimate coastal WQI around Korea peninsula using in situ measurements data and Geostationary Ocean Color Imager (GOCI) satellite imagery from 2011 to 2013 based on machine learning approaches. Scheme 1 calculates WQI using estimated water quality-related factors using GOCI reflectance data, and scheme 2 estimates WQI using GOCI band reflectance data and basic products(chlorophyll-a, suspended sediment, colored dissolved organic matter). Three machine learning approaches including Random Forest (RF), Support Vector Regression (SVR), and a modified regression tree(Cubist) were used. Results show that estimation of secchi disk depth produced the highest accuracy among the ocean parameters, and RF performed best regardless of water quality-related factors. However, the accuracy of WQI from scheme 1 was lower than that from scheme 2 due to the estimation errors inherent from water quality-related factors and the uncertainty of bottom dissolved oxygen. In overall, scheme 2 appears more appropriate for estimating WQI for surface water in coastal areas and chlorophyll-a concentration was identified the most contributing factor to the estimation of WQI.
A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.
We performed the seismic field data processing using an open-source software (Madagascar) to verify if it is applicable to processing of field data, which has low signal-to-noise ratio and high uncertainties in velocities. The Madagascar, based on Python, is usually supposed to be better in the development of processing technologies due to its capabilities of multidimensional data analysis and reproducibility. However, this open-source software has not been widely used so far for field data processing because of complicated interfaces and data structure system. To verify the effectiveness of the Madagascar software on field data, we applied it to a typical seismic data processing flow including data loading, geometry build-up, F-K filter, predictive deconvolution, velocity analysis, normal moveout correction, stack, and migration. The field data for the test were acquired in Gunsan Basin, Yellow Sea using a streamer consisting of 480 channels and 4 arrays of air-guns. The results at all processing step are compared with those processed with Landmark's ProMAX (SeisSpace R5000) which is a commercial processing software. Madagascar shows relatively high efficiencies in data IO and management as well as reproducibility. Additionally, it shows quick and exact calculations in some automated procedures such as stacking velocity analysis. There were no remarkable differences in the results after applying the signal enhancement flows of both software. For the deeper part of the substructure image, however, the commercial software shows better results than the open-source software. This is simply because the commercial software has various flows for de-multiple and provides interactive processing environments for delicate processing works compared to Madagascar. Considering that many researchers around the world are developing various data processing algorithms for Madagascar, we can expect that the open-source software such as Madagascar can be widely used for commercial-level processing with the strength of expandability, cost effectiveness and reproducibility.
Recently, stratigraphic reservoirs are getting more attention than structural reservoirs which have mostly developed. However, recognizing stratigraphic thin gas reservoirs in a stacked section is usually difficult because of tuning effects. Moreover, if the reflections from the brine-saturated region of a thin layer have the same polarity with those from the gas-saturated region, we could not easily identify the gas reservoir with conventional data processing technique. In this study, we introduced a way to delineate the gas-saturated region in a thin layer reservoir using a spectral decomposition method. First of all, amplitude spectrum with the variation of the frequency and the incident angle was investigated for the medium which represents property of Class 3, Class 1 or Class 4 AVO response. The results show that the maximum difference in the amplitude spectra between brine and gas-saturated thin layers occurs around the peak frequency independent of the incident angle and the type of AVO responses. In addition, the amplitude spectra of the gas-saturated zone are greater than those of brine-saturated one in Class 3 and Class 4 at the peak frequency while those of phenomenon occur oppositely in Class 1. Based on the results, we applied spectral decomposition method to the stacked section in order to distinguish the gas-saturated zone from the brine-saturated zone in a thin layer reservoir. To verify our new method, we constructed a thin-layer velocity model which contains both gas and brine-saturated zones which have the same reflection polarities. As a result, in the spectral decomposed sections near the peak frequency obtained by Wigner-Ville Distribution (WVD), we could identify the difference between reflections from gas- and brinesaturated region in the thin layer reservoir, which was hardly distinguishable in the stacked section.
Lambertian cloud model (Lambertian Cloud Model) is the simplified cloud model which is used to effectively retrieve the vertical ozone distribution of the atmosphere where the clouds exist. By using the Lambertian cloud model, the optical characteristics of clouds required for radiative transfer simulation are parametrized by Optical Centroid Cloud Pressure (OCCP) and Effective Cloud Fraction (ECF), and the accuracy of each parameter greatly affects the radiation simulation accuracy. However, it is very difficult to generalize the vertical ozone error due to the OCCP error because it varies depending on the radiation environment and algorithm setting. In addition, it is also difficult to analyze the effect of OCCP error because it is mixed with other errors that occur in the vertical ozone calculation process. This study analyzed the ozone retrieval error due to OCCP error using two methods. First, we simulated the impact of OCCP error on ozone retrieval based on Optimal Estimation. Using LIDORT radiation model, the radiation error due to the OCCP error is calculated. In order to convert the radiation error to the ozone calculation error, the radiation error is assigned to the conversion equation of the optimal estimation method. The results show that when the OCCP error occurs by 100 hPa, the total ozone is overestimated by 2.7%. Second, a case analysis is carried out to find the ozone retrieval error due to OCCP error. For the case analysis, the ozone retrieval error is simulated assuming OCCP error and compared with the ozone error in the case of PROFOZ 2005-2006, an OMI ozone profile product. In order to define the ozone error in the case, we assumed an ideal assumption. Considering albedo, and the horizontal change of ozone for satisfying the assumption, the 49 cases are selected. As a result, 27 out of 49 cases(about 55%)showed a correlation of 0.5 or more. This result show that the error of OCCP has a significant influence on the accuracy of ozone profile calculation.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1515-1519
/
2006
본 연구에서는 초단시간 강수예보(VSRF, Very Short-Range Forecast of precipitation) 시스템 구축 현황을 소개하고자 한다. VSRF 모델은 레이더 반사도 자료와 지상 AWS 자료를 이용하여 레이더-AWS 강우강도를 산출하는 강수분석과정과 분석된 강수량 자료와 중규모 수치예보장을 사용하여 외삽법에 의한 초단시간 강수예보를 수행하는 예보과정, 실시간으로 산출된 강수예보 자료를 검증하고 홈페이지에 제공하는 자료지원과정으로 구성된다. 본 연구에서는 모델의 예보능력을 향상시키기 위해 크게 두 가지 측면에서 모델을 개선하였다. 첫째는 모델의 입력자료인 레이더-AWS 강우강도 자료를 기상연구소 원격탐사연구실에서 운영하던 WPMM (Window Probability Matching Method)과 기상청 기상레이더과에서 운영하던 RQPE(Radar Quantitative Precipitation Estimation)의 알고리즘을 통합하여 정확한 강우강도 자료인 레이더-AWS 강우강도(RAR, Radar-AWS Rain rate) 시스템을 구축하여 개선하였으며, 둘째는 외삽과정을 통한 예보가 3시간이 지나면 예측능력이 감소하는 문제점을 보완하기 위해 현업 중규모 모델(RDAPS, Regional Data Assimilation and Prediction System)의 예측강수와 병합하여 모델을 개선하였다. 또한 이를 시계열 검증 및 공간 검증하는 실시간 검증 시스템을 구축하여 실시간으로 모델의 정확성을 평가하고 있다. 그 결과 입력자료 개선을 통한 모델의 정확도는 크게 향상된 결과는 볼 수 없었지만 미약하게 향상된 것을 확인할 수 있었으며, 모델의 병합을 통한 모델의 개선은 예측 3시간 이후부터는 50% 정도 향상되었다.의 대안을 제시하고자 한다.X>${\mu}_{max,A}$는 최대암모니아 섭취률을 이용하여 구한 결과 $0.65d^{-1}$로 나타났다.EX>$60%{\sim}87%$가 수심 10m 이내에 분포하였고, 녹조강과 남조강이 우점하는 하절기에는 5m 이내에 주로 분포하였다. 취수탑 지점의 수심이 연중 $25{\sim}35m$를 유지하는 H호의 경우 간헐식 폭기장치를 가동하는 기간은 물론 그 외 기간에도 취수구의 심도를 표층 10m 이하로 유지 할 경우 전체 조류 유입량을 60% 이상 저감할 수 있을 것으로 조사되었다.심볼 및 색채 디자인 등의 작업이 수반되어야 하며, 이들을 고려한 인터넷용 GIS기본도를 신규 제작한다. 상습침수지구와 관련된 각종 GIS데이타와 각 기관이 보유하고 있는 공공정보 가운데 공간정보와 연계되어야 하는 자료를 인터넷 GIS를 이용하여 효율적으로 관리하기 위해서는 단계별 구축전략이 필요하다. 따라서 본 논문에서는 인터넷 GIS를 이용하여 상습침수구역관련 정보를 검색, 처리 및 분석할 수 있는 상습침수 구역 종합정보화 시스템을 구축토록 하였다.N, 항목에서 보 상류가 높게 나타났으나, 철거되지 않은 검전보나 안양대교보에 비해 그 차이가 크지 않은 것으로 나타났다.의 기상변화가 자발성 기흉 발생에 영향을 미친다고 추론할 수 있었다. 향후 본 연구에서 추론된 기상변화와 기흉 발생과의 인과관계를 확인하고 좀 더 구체화하기 위한 연구가 필요할 것이다.게 이루어질 수 있을 것으로 기대된다.는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을 활용하는 경우 주식투자기간은 24개월이하의 중단기가 적합함을 발견하였다. 이상의 행태적 측면과 투자성과측면의 실증결과를 통하여 한국주식시장에
The seismic interpretation was carried out to understand the evolution of the Sora and North Sora Sub-basins, South Sea of Korea. Both sub-basins belong to the Domi Basin, which is located in the northeastern margin of East China Sea Basin with Fukue Basin of Japan. Age assignment of each strata in this study was based on the data of boreholes and seismic interpretation in NW Japan. Four regional horizons were identified, and five geological units; Y(basement), Q(Eocene$\sim$Middle Oligocene), M(Middle Oligocene$\sim$Early Miocene), L(Early Miocene$\sim$Late Miocene) and D(Late Miocene$\sim$Present) groups in ascending order. Structural trends of the main boundary faults and the basin-fill sediment are different between the Sora and North Sora Sub-basins; i.e., trend of the main boundary-faults, dip of horizons, distribution of basin and development of growth fault. These results imply that the Sora Sub-basin would have opened earlier than the North Sora Sub-basin.
Ground-penetrating radar (GPR) enables rapid data acquisition over extensive areas, but interpreting the obtained data requires specialized knowledge. Numerous studies have utilized numerical analysis methods to examine GPR signal characteristics under various conditions. To develop more realistic numerical models, the heterogeneous nature of the ground, which causes clutter, must be considered. Clutter refers to signals reflected by objects other than the target. The Peplinski material model and fractal techniques can simulate these heterogeneous characteristics, yet there is a shortage of research on the necessary input parameters. Moreover, methods for quantitatively evaluating the similarity between field and analytical data are not well established. In this study, we calculated the autocorrelation coefficient of field data and determined the correlation length using the autocorrelation function. The correlation length represented the temporal or spatial distance over which data exhibited similarity. By comparing the correlation length of field data with that of the numerical model incorporating fractal weights, we quantitatively evaluated a numerical model for heterogeneous ground. Consequently, the results of this study demonstrated a numerical modeling technique that reflected the clutter characteristics of the field through correlation length.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.