• Title/Summary/Keyword: 반사경계

Search Result 395, Processing Time 0.029 seconds

Assessment of actual condition based on GIS for UHF band Propagation Interference caused by Apartment (GIS를 활용한 아파트 지역의 전파 장애 실태 평가)

  • 김진택;엄정섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.389-397
    • /
    • 2004
  • 본 연구는 GIS를 이용하여 아파트 단지의 UHF대역의 전파장애에 대한 예측모델을 제시한다. 전파예측모델은 기지국 및 중계기 위치설계와 전파음영지역 결정 등 무선네트워크 서비스에 결정적으로 활용된다 기존의 전파예측모델은 한국지형요소나 3차원 공간기술이 반영되지 않고 외국지형기반의 2차원적인 접근으로 개발되어 있다. 특히 많은 사람이 거주하는 아파트단지에 대해서는 고려가 되어 있지 않은 실정이며, 마치 아파트 단지가 일반 건물로 취급되어 전파환경 요소로 분류되지 않은 상태이다. 그리고 전파관리자가 기존 전파 예측모델을 이용한 무선네트워크 설계 및 운용등에 있어 정확한 의사결정지원에 어려움이 많다. 본 연구는 이러한 한계와 문제점을 해결하기 위해서 아파트 단지의 전파에 대한 영향을 3차원 공간밀집, 건물높이, 전파의 전송방향에 대한 건물배치등 3가지 요소로 분류하고 GIS 도구로 그 요소들을 분석하였다. 그 결과로 상관과 회귀분석등 정량적인 방법으로 평가하여 아파트 전파예측모델(GARP)을 개발하여 다음의 결과를 얻었다. 첫째, 아파트 단지가 UHF 대역의 전파에 대한 영향은 전파진행방향성이 57%, 공간밀집이 30%, 건물높이가 13%의 순으로 나타났다. 둘째, 본 연구에서 개발된 아파트 모델은 기존 모델에 비해 평균 6.3dBm, 최소 2.15 ~ 최대 12.48dBm의 개선 효과가 있다. 셋째, 급속히 확산되는 도시 개발에 3차원 공간상에서 전파예측모델을 시뮬레이션하여 전파의 영향을 예측할 수 있으며, 대단지 아파트 건설과 전파환경영향평가의 기초정보 수집에 활용될 수 있다. 본 연구는 GARP모델과 GIS 가시권 분석기능을 이용하여 실제 지형공간상에서 전파경로 손실치를 도시화함으로써 전파관리자가 무선서비스지역 설계, 전파음영지역 판단, 최적 중계기와 기지국 위치 선정에 기여할 것으로 판단된다.하지 않은 지역과 서로 다른 분광특성을 나타내므로 별도의 Segment를 형성하게 된다. 따라서 임상도의 경계선으로부터 획득된 Super-Object의 분광반사 값과 그 안에서 형성된 Sub-Object의 분광반사값의 차이를 이용하여 임상도의 갱신을 위한 변화지역을 탐지하였다.라서 획득한 시추코아에 대해서도 각 연구기관이 전 구간에 대해 동일하게 25%의 소유권을 가지고 있다. ?스굴 시추사업은 2008년까지 수행될 계획이며, 시추작업은 2005년까지 완료될 계획이다. 연구 진행과 관련하여, 공동연구의 명분을 높이고 분석의 효율성을 높이기 위해서 시료채취 및 기초자료 획득은 4개국의 연구원이 모여 공동으로 수행한 후의 결과물을 서로 공유하고, 자세한 전문분야 연구는 각 국의 대표기관이 독립적으로 수행하는 방식을 택하였다 ?스굴에 대한 제1차 시추작업은 2004년 3월 말에 실시하였다. 시추작업 결과, 약 80m의 시추 코아가 성공적으로 회수되어 현재 러시아 이르쿠츠크 지구화학연구소에 보관중이다. 이 시추코아는 2004년 8월 중순경에 4개국 연구팀원들에 의해 공동으로 기재된 후에 분할될 계획이다. 분할된 시료는 국내로 운반되어 다양한 전문분야별 연구에 이용될 것이다. 한편, 제2차 시추작업은 2004년 12월에서 2005년 2월 사이에 실시될 계획이다. 수백만년에 이르는 장기간에 걸쳐 지구환경변화 기록이 보존되어 있는 ?스굴호에 대한 시추사업은 후기 신생대 동안 유라시아 대륙 중부에서 일어난 지구환경 및 기후변화를 이해함과 동시에 이러한 변화가 육상생태계 및 지표지질환경에 미친 영향을 이해하는데 크게 기여할 것이다.lieve in safety with Radioactivity wastes control for harmony with Environment.d by the experiments under vari

  • PDF

Flow Noise Analysis of Ship Pipes using Lattice Boltzmann Method (격자볼츠만기법을 이용한 선박 파이프내 유동소음해석)

  • Beom-Jin Joe;Suk-Yoon Hong;Jee-Hun Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.512-519
    • /
    • 2023
  • Noise pollution poses significant challenges to human well-being and marine ecosystems. It is primarily caused by the flow around ships and marine installations, emphasizing the need for accurate noise evaluation of flow noise to ensure environmental safety. Existing flow noise analysis methods for underwater environments typically use a hybrid method combining computational fluid dynamics and Ffowcs Williams-Hawkings acoustic analogy. However, this approach has limitations, neglecting near-field effects such as reflection, scattering, and diffraction of sound waves. In this study, an alternative using direct method flow noise analysis via the lattice Boltzmann method (LBM) is incorporated. The LBM provides a more accurate representation of the underwater structural boundaries and acoustic wave effects. Despite challenges in underwater environments due to numerical instabilities, a novel DM-TS LBM collision operator has been developed for stable implementations for hydroacoustic applications. This expands the LBM's applicability to underwater structures. Validation through flow noise analysis in pipe orifice demonstrates the feasibility of near-field analysis, with experimental comparisons confirming the method's reliability in identifying main pressure peaks from flow noise. This supports the viability of near-field flow noise analysis using the LBM.

Seismic interval velocity analysis on prestack depth domain for detecting the bottom simulating reflector of gas-hydrate (가스 하이드레이트 부존층의 하부 경계면을 규명하기 위한 심도영역 탄성파 구간속도 분석)

  • Ko Seung-Won;Chung Bu-Heung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.638-642
    • /
    • 2005
  • For gas hydrate exploration, long offset multichannel seismic data acquired using by the 4km streamer length in Ulleung basin of the East Sea. The dataset was processed to define the BSRs (Bottom Simulating Reflectors) and to estimate the amount of gas hydrates. Confirmation of the presence of Bottom Simulating reflectors (BSR) and investigation of its physical properties from seismic section are important for gas hydrate detection. Specially, faster interval velocity overlying slower interval velocity indicates the likely presences of gas hydrate above BSR and free gas underneath BSR. In consequence, estimation of correct interval velocities and analysis of their spatial variations are critical processes for gas hydrate detection using seismic reflection data. Using Dix's equation, Root Mean Square (RMS) velocities can be converted into interval velocities. However, it is not a proper way to investigate interval velocities above and below BSR considering the fact that RMS velocities have poor resolution and correctness and the assumption that interval velocities increase along the depth. Therefore, we incorporated Migration Velocity Analysis (MVA) software produced by Landmark CO. to estimate correct interval velocities in detail. MVA is a process to yield velocities of sediments between layers using Common Mid Point (CMP) gathered seismic data. The CMP gathered data for MVA should be produced after basic processing steps to enhance the signal to noise ratio of the first reflections. Prestack depth migrated section is produced using interval velocities and interval velocities are key parameters governing qualities of prestack depth migration section. Correctness of interval velocities can be examined by the presence of Residual Move Out (RMO) on CMP gathered data. If there is no RMO, peaks of primary reflection events are flat in horizontal direction for all offsets of Common Reflection Point (CRP) gathers and it proves that prestack depth migration is done with correct velocity field. Used method in this study, Tomographic inversion needs two initial input data. One is the dataset obtained from the results of preprocessing by removing multiples and noise and stacked partially. The other is the depth domain velocity model build by smoothing and editing the interval velocity converted from RMS velocity. After the three times iteration of tomography inversion, Optimum interval velocity field can be fixed. The conclusion of this study as follow, the final Interval velocity around the BSR decreased to 1400 m/s from 2500 m/s abruptly. BSR is showed about 200m depth under the seabottom

  • PDF

Flow Noise Analysis of Hull Appendages Using Lattice Boltzmann Method (격자 볼츠만 기법을 이용한 선체 부가물 유동소음해석)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.742-750
    • /
    • 2020
  • The flow noise generated by hull appendages is directly related to the performance of the sonar in terms of self-noise and induces a secondary noise source through interaction with the propeller and rudder. Thus, the noise in the near field should be analyzed accurately. However, the acoustic analogy method is an indirect method that is not used to simulate the propagation of an acoustic signal directly; therefore, diffraction, reflection, and scattering characteristics cannot be considered, and near-field analysis is limited. In this study, the propagation process of flow noise in water was directly simulated by using the lattice Boltzmann method. The lattice Boltzmann method could be used to analyze flow noise by simulating the collision and streaming processes of molecules, and it is suitable for noise analysis because of its compressibility, low dissipation rate, and low dispersion rate characteristics. The flow noise source was derived using Reynolds-averaged Navier-Stokes equations for the hull appendages, and the propagation process of the flow noise was directly simulated using the lattice Boltzmann method by applying the developed flow-acoustic boundary conditions. The derived results were compared with Ffowcs Williams-Hawkings results and hydrodynamic pressure results based on the receiver location to verify the usefulness of the lattice Boltzmann method within the near-field range in comparison with other techniques.

Ultrasonic Wave Propagation Analysis for Damage Detection in Heterogeneous Concrete Materials (콘크리트 내부결함 탐지를 위한 초음파 전파 해석)

  • Jung, Hwee Kwon;Rhee, Inkyu;Kim, Jae-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.225-235
    • /
    • 2020
  • Ultrasonic investigation of damage detection has been widely used for non-destructive testing of various concrete structures. This study focuses on damage detection analysis with the aid of wave propagation in two-phase composite concrete with aggregate (inclusion) and mortar (matrix). To fabricate a realistic simulation model containing a variety of irregular aggregate shapes, the mesh generation technique using an image processing technique was proposed. Initially, the domains and boundaries of the aggregates were extracted from the digital image of a typical concrete cut-section. This enables two different domains: aggregates and mortar in heterogeneous concrete sections, and applied the grids onto these domains to discretize the model. Subsequently, finite element meshes are generated in terms of spatial and temporal requirements of the model size. For improved analysis results, all meshes are designed to be quadrilateral type, and an additional process is conducted to improve the mesh quality. With this simulation model, wave propagation analyses were conducted with a central frequency of 75 kHz of the Mexican hat incident wave. Several void damages, such as needle-shaped cracks and void-shaped holes, were artificially introduced in the model. Finally, various formats of internal damage were detected by implementing energy mapping based signal processing.

A Study on the Differences of Risk Assessment Tool and Personality Assessment Inventory by Recidivism Types of Juvenile Delinquents (재비행 위험성의 정도에 따른 비행촉발요인과 PAI의 영향요인)

  • Kim, Eun Mi
    • Journal of Digital Convergence
    • /
    • v.12 no.2
    • /
    • pp.119-128
    • /
    • 2014
  • This Study investigated the differences of risk assessment tool and personality assessment inventory (PAI) by recidivism types of juvenile delinquents, the psychological factors that have a influence of juvenile behaviors. 268 incipient Juvenile criminals who had committed crime in the areas of Seoul, were categorized in the three degree of recidivism types. The result showed the significant differences among risk assessment tool, such as family functioning risk factor, school risk factor, away-from-home risk factor, delinquent risk factor, and personal risk factor. PAI scores among the recidivism type showed the significant differences on SOM, DEP, PAR, SCZ, BOR, ANT, ALC, DRG, AGG, SUI, STR, NON, DOM, and WRM. The predictor variables explained a risk assessment tool were STR, ALC, DEP, DOM and WRM in PAI scales. And the interventions and preventions about juvenile delinquents discussed in psychological aspects.

A Comparative Study on Dynamic Behavior of Soil Containers that Have Different Side Boundary Conditions (측면 경계 조건이 다른 토조들의 동적거동 비교에 관한 연구)

  • Kim, Jin-Man;Ryu, Jeong-Ho;Son, Su-Won;Na, Ho-Young;Son, Jeong-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.107-116
    • /
    • 2011
  • Rigid soil containers (or rigid boxes) are often used for 1g shaking table tests. The rigid boxes, however, do not accurately simulate the amplification of ground acceleration and phase difference of seismic motion in the model ground due to the confinement of shear deformation and the reflection of seismic wave at the box walls. Laminar soil containers (or laminar shear boxes) can simulate the free field motion at convincingly superior accuracy than the rigid ones. In this study, the soft ground is modeled for both types of boxes and is subjected to seismic loading using a 1g shaking table. The comparison of the results using the two types of soil containers illustrates that, in case of the rigid box, the ground acceleration shows non uniform distribution and the phase synchronization of input motion. Whereas, the dynamic behavior of the laminar shear box shows good agreement with the free field behaviors such as the amplification of ground acceleration and the occurrence of phase difference.

Structure and Sequence Stratigraphy in the Southwestern Area of the South China Sea (남중국해 남서부 지역에서의 지구조 분석 및 순차층서학적 연구)

  • Lee, Eung Gyu;Lee, Gi Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.179-190
    • /
    • 1999
  • The overall structural framework was studied using the regional 2D seismic data, followed by the sequence stratigraphic study on the 3D seismic and well- log data in the margin of the South Con Son basin of the South China Sea. This research contributes to delineate depositional stratigraphy, depositional environment and geologic history in the 3D seismic area of highly complicated faulting. Eight Miocene sequences were indicated on the 3D seismic and well-log data, in which the structural maps of each sequence boundary and the isochron maps for the corresponding sequence were made. The seismic facies were analyzed for each sequence volume and sequence boundary surface. The 3D seismic area is characterized by coal beds deposited in the transgression environment (transgression systems tract) and channel distributions just above the sequence boundaries. During the Early Miocene, the coals and thick shales deposited in the mangrove swamp representing the lower coastal plain environment. During the Mid to Late Miocene, thick clastic sediments deposited in the coastal to shallow shelf by regional subsidence and marine transgression. The isochron maps and structural patterns indicate that the sediments were transported from west to east or from northwest to southeast.

  • PDF

SH Wave Scattering from Cracks: Comparisons of Approximate and Exact Solutions (SH파의 균열 산란장 해석: 근사해와 엄밀해의 비교)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Song, Sung-Jin;Schmerr, L.W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.354-361
    • /
    • 2004
  • This Paper describes a crack scattering model for SH wave based on the boundary integral equation(BIE) method, where the fundamental unknown is crack opening displacement(COD). When a time harmonic plane wave was incident on a 2-D isolated crack (slit) of width 2a, the COD distributions were numerically calculated as a function of ka. The calculated COD agreed well with results obtained with other methods. The far-field scattering amplitude, which completely characterizes the flaw response, was calculated in two ways. The Kirchhoff approximation and the BIE-COD exact formulation were compared in terms of incidence angle and frequency ka in a pulse-echo mode. Maximum response was obtained for both methods at the specular reflection direction. Away from the specular direction, the Kirchhoff approximation becomes less accurate. The time domain crack response was also calculated using a band-limited spectrum of center frequency 10 MHz. At oblique incidence to the crack both methods show the existence of an antisymmetric flash points occurring from the crack edge. The Kirchhoff approximation provides an exact time interval between flash points, although it unrealistically gives the same amplitude.

Intertidal DEM Generation Using Waterline Extracted from Remotely Sensed Data (원격탐사 자료로부터 해안선 추출에 의한 조간대 DEM 생성)

  • 류주형;조원진;원중선;이인태;전승수
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.221-233
    • /
    • 2000
  • An intertidal topography is continuously changed due to morphodynamics processes. Detection and measurement of topographic change for a tidal flat is important to make an integrated coastal area management plan as well as to carry out sedimentologic study. The objective of this study is to generate intertidal DEM using leveling data and waterlines extracted from optical and microwave remotely sensed data in a relatively short period. Waterline is defined as the border line between exposed tidal flat and water body. The contour of the terrain height in tidal flat is equivalent to the waterline. One can utilize satellite images to generate intertidal DEM over large areas. Extraction of the waterline in a SAR image is a difficult task to perform partly because of the presence of speckle and partly because of similarity between the signal returned from the sea surface and that from the exposed tidal flat surface or land. Waterlines in SAR intensity and coherence map can effectively be extracted with MSP-RoA edge detector. From multiple images obtained over a range of tide elevation, it is possible to build up a set of heighted waterline within intertidal zone, and then a gridded DEM can be interpolated. We have tested the proposed method over the Gomso Bay, and succeeded in generating intertidal DEM with relatively high accuracy.