• Title/Summary/Keyword: 반복학습

Search Result 1,045, Processing Time 0.024 seconds

A Development of Java Applet for understanding Sort Algorism (정렬 알고리듬 이해를 위한 JAVA 애플릿 개발)

  • 최관순;김진만;최규오;전흥구
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.726-729
    • /
    • 2002
  • 웹은 이제 우리 생활의 일부분이 되어 가고 있다. 많은 사람들이 웹을 이용하여 중요한 정보를 얻고 있으며, 이로 인하여 많은 콘텐츠들이 개발되고 있다. 그 중 학습을 목적으로 하는 교육 콘텐츠도 개발되고 있는데, 이러한 개발은 교육 및 훈련이 쉽고, 원하는 시간에 반복 학습이 가능하기 때문에 많이 이루어지고 있다. 본 연구에서는 알고리듬의 이해를 도와 주는 JAVA 프로그램을 개발하게 되었다. 웹에서의 구현을 위해 JAVA를 사용하였으며, 기존의 많은 알고리듬 중 정렬 알고리듬을 내용으로 하는 교육 콘텐츠를 개발하게 되었다.

  • PDF

초등수학경시대회 문항분석을 통한 초등수학 영재교육 활성화 방안에 관한 연구

  • Kim, Hae-Gyu;Kim, Seung-Jin
    • Communications of Mathematical Education
    • /
    • v.16
    • /
    • pp.345-365
    • /
    • 2003
  • 우리 나라 수학경시대회의 운영은 선발에 초점이 맞추어져 있어, 지속적인 교육 및 피드백이 결여되어 있고 단순히 경시대회성 기출문제만을 반복하여 출제하고 있는 실정이다. 그러므로 영재의 특성을 고려하고, 영재성을 키워주기 위해서는 무엇보다도 수학 창의적 문제해결력을 신장시켜줄 수 있는 학습 자료의 개발이 시급하다. 따라서 본 논문에서는 초등수학경시대회 기출문제와 시중에 출판되어 있는 경시대회 준비를 위한 학습자료를 분석하여, 일선 초등학교 현장에서 실시되고 있는 영재교육을 활성화시킬 수 있는 방안을 연구하는 데 목적이 있다.

  • PDF

Extraction and Classification of Proper Nouns by Rule-based Machine Learning (규칙 기반의 기계학습을 통한 고유명사의 추출과 분류)

  • 노태길;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.170-172
    • /
    • 2000
  • 고유명사를 추출하고 그 범주를 파악할 수 있다면, 이는 정보 추출이나 정보 검색, 문서 요약과 같은 분야에 도움을 줄 수 있다. 본 논문에서는 고유명사를 추출하고 그 범주를 찾는 방법을 제시한다. 고유명사가 태깅된 코퍼스로부터, 고유명사의 내부와 주변에 반복적으로 나타나는 실마리들을 규칙 기반으로 학습한다. 이를 통하여 고유명사를 찾고 그 범주를 정한다. 구현한 시스템은 경제기사 코퍼스에서 4가지 범주로 고유명사를 추출하고 분류함에 있어 79.8%의 재현율과 92.9%의 정확률, 그리고 F 평가치에서 85.8의 성능을 보인다.

  • PDF

Prediction of Lateral Deflection of Model Piles Using Artificial Neural Network by the Application Readjusting Method (Readjusting 기법을 적용한 인공신경망의 모형말뚝 수평변위 예측)

  • 김병탁;김영수;정성관
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • 본 논문에서는 단일 및 군말뚝의 수평변위를 예측하기 위하여 신경망 학습속도의 향상과 지역 최소점 수렴을 방지하는 Readjusting 기법을 적용한 인공신경망을 도입하였다. 이 인공신경망을 M-EBPNN 이라고 한다. M-EBPNN에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였으며, 그리고 신경망의 학습속도와 지역 최소점의 수렴성을 평가하기 위하여 오류 역전파 신경망(EBPNN)의 결과와도 비교 분석하였다. M-EBPNN의 적용성 검증을 위하여 200개의 모형실험결과들을 이용하였으며, 신경망의 구조는 EBPNN의 구조와 동일한 한 개의 입력층과 두 개의 은닉층 그리고 한 개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학습에 이용하지 않은 데이터들은 예측에 이용되었다. 그리고, 신경망의 최적학습을 위하여 적합한 은닉층의 뉴런 수와 학습률은 EBPNN에서 결정한 값들을 본 신경망에 이용하였다. 해석결과들에 의하면, 동일한 학습패턴에서의 M-EBPNN이 학습 반복횟수는 EBPNN 보다 최고 88% 감소하였으며 지역 최소점에 수렴하는 현상은 거의 나타나지 않았다. 따라서, 인공신경망 모델이 수평하중을 받는 말뚝의 수평변위 예측에 적용될 수 있는 가능성을 보여 주었다.

  • PDF

Binary Neural Network in Binary Space using NETLA (NETLA를 이용한 이진 공간내의 패턴분류)

  • Sung, Sang-Kyu;Park, Doo-Hwan;Jeong, Jong-Won;Lee, Joo-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.431-434
    • /
    • 2001
  • 단층 퍼셉트론이 처음 개발되었을 때, 간단한 패턴을 인식하는 학습 기능을 가지고 있기 장점 때문에 학자들의 관심을 끌었다. 단층 퍼셉트론은 한 개의 소자를 이용해서 이진 논리를 가중치(weight)의 변경만으로 모두 표현할 수 있는 장점 때문에 영상처리, 패턴인식, 장면인식 등에 이용되어 왔다. 최근에, 역전파학습(Back-Propagation Learning)알고리즘이 이진 공간내의 매핑 문제에 적용되고 있다. 그러나, 역전파 학습알고리즘은 연속공간 내에서 긴 학습시간과 비효율적인 수행의 문제를 가지고 있다. 일반적으로 역전파 학습 알고리즘은 간단한 이진 공간에서 매핑하기 위해서 많은 반복과정을 요구한다. 역전파 학습 알고리즘에서는 은닉층의 뉴런의 수는 주어진 문제를 해결하기 위해서 우선순위(prior)를 알지 못하기 때문에 입력층과 출력층내의 뉴런의 수에 의존한다. 따라서, 3층 신경회로망의 적용에 있어 가장 중요한 문제중의 하나는 은닉층내의 필요한 뉴런수를 결정하는 것이고, 회로망 합성과 가중치 결정에 대한 적절한 방법을 찾지 못해 실제로 그 사용 영역이 한정되어 있었다. 본 논문에서는 패턴 분류를 위한 새로운 학습방법을 제시한다. 훈련입력의 기하학적인 분석에 기반을 둔 이진 신경회로망내의 은닉층내의 뉴런의 수를 자동적으로 결정할 수 있는 NETLA(Newly Expand and Truncate Learning Algorithm)라 불리우는 기하학적 학습알고리즘을 제시하고, 시뮬레이션을 통하여, 제안한 알고리즘의 우수성을 증명한다.

  • PDF

Effectiveness of Multimedia Program in Computer-assisted Vocabulary Learning (컴퓨터 보조 학습을 통한 멀티미디어 어휘교육의 효율성)

  • Choi, Michelle Mi-Hee
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.123-131
    • /
    • 2011
  • The purpose of this study is to discover if the use of computer technologies in computer-assisted language learning, in the aspect of vocabulary learning, is both effective and useful. The technique of using multimedia lessons, using the computer, offers a variety of language learning tasks in relation to the four basic language learning skills. Korean students have been accustomed to a cramming style of education, and they utilize rote memorization for learning vocabulary. This study consisted of surveys and experiments, using specific multimedia language learning courseware exercises on three different age groups. The study explores the issues and problems that followed, and how teachers could effectively apply or enhance their vocabulary teaching through computer-assisted multimedia which is suited for a variety of levels versus the classroom off-line vocabulary learning application which is suited to one level.

Development of Location Image Analysis System design using Deep Learning

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • The research study was conducted for development of the advanced image analysis service system based on deep learning. CNN(Convolutional Neural Network) is built in this system to extract learning data collected from Google and Instagram. The service gets a place image of Jeju as an input and provides relevant location information of it based on its own learning data. Accuracy improvement plans are applied throughout this study. In conclusion, the implemented system shows about 79.2 of prediction accuracy. When the system has plenty of learning data, it is expected to predict various places more accurately.

A Course Scheduling Multi-module System based on Web using Algorithm for Analysis of Weakness (취약성 분석 알고리즘을 이용한 웹기반 코스 스케줄링 멀티 모듈 시스템)

  • 이문호;김태석;김봉기
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2002
  • The appearance of web technology has accelerated the role of the application of multimedia technology, computer communication technology and multimedia application contents. Recently WBI model which is based on web has been proposed in the part of the new activity model of teaching-teaming. How to learn and evaluate is required to consider individual learner's learning level. And it is recognized that the needs of the efficient and automated education agents in the web-based instruction is increased But many education systems that had been studied recently did not service fluently the courses which learners had been wanting and could not provide the way for the learners to study the learning weakness which is observed in the continuous feedback of the course. In this paper we propose design of multi-module system for course scheduling of learner-oriented using weakness analysis algorithm. First proposed system monitors learner's behaviors constantly, evaluates them, and calculates his accomplishment and weakness. From this weakness the multi-agent prepares the learner a suitable course environment to strengthen his weakness. Then the learner achieves an active and complete teaming from the repeated and suitable course.

  • PDF

Automatic segmentation for continuous spoken Korean language recognition based on phonemic TDNN (음소단위 TDNN에 기반한 한국어 연속 음성 인식을 위한 데이타 자동분할)

  • Baac, Coo-Phong;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.30-34
    • /
    • 1995
  • 신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.

  • PDF

A Study on the Digital Hardware Implementation of Self-Organizing feature Map Neural Network with Constant Adaptation Gain and Binary Reinforcement Function (일정 학습계수와 이진 강화함수를 가진 SOFM 신경회로망의 디지털 하드웨어 구현에 관한 연구)

  • 조성원;석진욱;홍성룡
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.402-408
    • /
    • 1997
  • 일정 학습계수와 이진 강화함수를 지닌 자기조직화 형상지도(Self-Organizing Feature Map)신경회로망을 FPGA위에 하드웨어로 구현하였다. 원래의 SOFM 알고리즘에서 학습계수가 시간 종속형인데 반하여, 본 논문에서 하드웨어로 구현한 알고리즘에서는 학습계수가 일정인 값으로 고정되며 이로 인한 성능저하를 보상하기 위하여 이진 강화함수를 부가하였다. 제안한 알고리즘은 복잡한 곱셈 연산을 필요로 하지 않으므로 하드웨어 구현시 보다 쉽게 구현 가능한 특징이 있다. 1개의 덧셈/뺄셈기와 2개의 덧셈기로 구성된 단위 뉴런은 형대가 단순하면서 반복적이므로 하나의 FPGA위에서도 다수의 뉴런을 구현 할 수 있으며 비교적 소수의 제어 신호로서 이들을 모두 제어 가능할 수 있도록 설계하였다. 실험결과 각 구성부분은 모두 이상 없이 올바로 동작하였으며 각 부분이 모두 종합된 전체 시스템도 이상 없이 동작함을 알 수 있었다.

  • PDF