• Title/Summary/Keyword: 반복계산 재구성방법

Search Result 27, Processing Time 0.019 seconds

A System Model of Iterative Image Reconstruction for High Sensitivity Collimator in SPECT (SPECT용 고민감도 콜리메이터를 위한 반복적 영상재구성방법의 시스템 모델 개발)

  • Bae, Seung-Bin;Lee, Hak-Jae;Kim, Young-Kwon;Kim, You-Hyun;Lee, Ki-Sung;Joung, Jin-Hun
    • Journal of radiological science and technology
    • /
    • v.33 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • Low energy high resolution (LEHR) collimator is the most widely used collimator in SPECT imaging. LEHR has an advantage in terms of image resolution but has a difficulty in acquiring high sensitivity due to the narrow hole size and long septa height. Throughput in SPECT can be improved by increasing counts per second with the use of high sensitivity collimators. The purpose of this study is to develop a system model in iterative image reconstruction to recover the resolution degradation caused by high sensitivity collimators with bigger hole size. We used fan-beam model instead of parallel-beam model for calculation of detection probabilities to accurately model the high sensitivity collimator with wider holes. In addition the weight factors were calculated and applied onto the probabilities as a function of incident angle of incoming photons and distance from source to the collimator surface. The proposed system model resulted in the equivalent performance with the same counts (i.e. in shortened acquisition time) and improved image quality in the same acquisition time. The proposed method can be effectively applied for resolution improvement of pixel collimator of next generation solid state detectors.

Speaker-adaptive Word Recognition Using Mapped Membership Function (사상멤버쉽함수에 의한 화자적응 단어인식)

  • Lee, Ki-Yeong;Choi, Kap-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.40-52
    • /
    • 1992
  • In this paper, we propose the speaker adaptive word recognition method using a mapped membership function, in order to absorb a fluctuation owing to personal difference which is a problem of speaker independent speech recognition. In the training procedure of this method, the mapped membership function is made with the fuzzy theory introducded into a mapped codebook, between an unknown speaker's spectrum pattern and a standard speaker's one. In the recognition procedure, an input pattern of an unknown speaker is reconstructed to the pattern which is adapted to that of a standard speaker by the mapped membership function. To show the validity of this method, word recognition experiments are carried out using 28 DDD area names. The recognition rate of the conventional speaker-adaptive method using a mapped codebook by VQ is 64.9[%], and that made by a fuzzy VQ is 76.2[%]. Throughout the experiment using a mapped membership function, we can achieve 95.4[%] recognition rate. This shows that our proposed method is more excellent in recognition performance. Moreover, this method doesn't need an iterative training procedure to make the mapped membership function, and memory capacity and computation requirements for this method are reduced to 1/30 and 1/500 time of those for the conventional method using a mapped codebook, respectively.

  • PDF

Moving Object Detection Algorithm for Surveillance System (무인 감시 시스템을 위한 이동물체 검출 알고리즘)

  • Lim Kang-mo;Lee Joo-shin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.44-53
    • /
    • 2005
  • In this paper, a improved moving object detection algorithm for stable performance of surveillance system in case of iterative moving in limited area and rapidly illuminance change in background scene is proposed. The proposed algorithm is that background scenes are sampled for initializing background image then the sampled fames are divided by block and sum of graylevel value for each block pixel was calculated, respectively. The initialization of background image is that background frame is respectively reconstructed with selecting only the maximum graylevel value and the minimum graylevel value of blocks located at same position between adjacent frames, then reference images of background are set by the reconstructed background images. Moving object detecting is that the current image frame is divided by block then sum of graylevel value for each block pixel is calculated. If the calculated value is out of graylevel range of the initialized two reference images, it is decided with moving objects block, otherwise it is decided background. The evaluated results is that the error rate of the proposed method is less than the error rate of the existing methods from $0.01{\%}$ to $20.33{\%}$ and the detection rate of the proposed method is better than the existing methods from $0.17{\%}\;to\;22.83{\%}$.

Image Reconstruction of Eigenvalue of Diffusion Principal Axis Using Diffusion Tensor Imaging (확산텐서영상을 이용한 확산 주축의 고유치 영상 재구성)

  • Kim, In-Seong;Kim, Joo-Hyun;Yeon, Gun;Suh, Kyung-Jin;Yoo, Don-Sik;Kang, Duk-Sik;Bae, Sung-Jin;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.110-118
    • /
    • 2007
  • Purpose: The objective of this work to construct eigenvalue maps that have information of magnitude of three primary diffusion directions using diffusion tensor images. Materials and Methods: To construct eigenvalue maps, we used a 3.0T MRI scanner. We also compared the Moore-Penrose pseudo-inverse matrix method and the SVD (single value decomposition) method to calculate magnitude of three primary diffusion directions. Eigenvalue maps were constructed by calculating of magnitude of three primary diffusion directions. We did investigate the relationship between eigenvalue maps and fractional anisotropy map. Results: Using Diffusion Tensor Images by diffusion tensor imaging sequence, we did construct eigenvalue maps of three primary diffusion directions. Comparison between eigenvalue maps and Fractional Anisotropy map shows what is difference of Fractional Anisotropy value in brain anatomy. Furthermore, through the simulation of variable eigenvalues, we confirmed changes of Fractional Anisotropy values by variable eigenvalues. And Fractional anisotropy was not determined by magnitude of each primary diffusion direction, but it was determined by combination of each primary diffusion direction. Conclusion: By construction of eigenvalue maps, we can confirm what is the reason of fractional anisotropy variation by measurement the magnitude of three primary diffusion directions on lesion of brain white matter, using eigenvalue maps and fractional anisotropy map.

  • PDF

Performance Characteristics of MicroPET R4 Scanner for Small Animal Imaging (소동물 영상을 위한 MicroPET R4스캐너의 특성평가)

  • Lee, Byeong-Il;Lee, Jae-Sung;Kim, Jin-Su;Lee, Dong-Soo;Choi, Chang-Un;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.1
    • /
    • pp.49-56
    • /
    • 2005
  • Purpose: Dedicated animal PET is useful equipment for the study of new PET tracer. recently, microPET R4 was installed in the Korea institute of radiology and medical science. In this study, we measured the characteristics of scanner. Materials and methods: Resolution was measured using a line source (F-18:65 ${\mu}Ci$, inner diameter: 0.5 mm). The line source was put in the axial direction and was moved from the center of field of view to outside with 1 mm interval. PET images were reconstructed using a filtered back-protection and ordered subset expectation maximization. line source (16.5 ${\mu}Ci$, 78 mm) was put on the tenter of axial direction to measure the sensitivity when the deadtime was under 1%. Images were acquired during 4 minutes respectively from center to 39 mm outward. Delayed count was subtracted from total count and then decay was corrected for the calculation of sensitivity. Noise equivalent count ratio and scatter fraction were calculated using cylindrical phantom. Results: Spatial resolution of reconstructed image using filtered back-projection was 1.86 mm(radial), 1.95 mm(tangential), 1.95 mm(axial) in the tenter of field of view, and 2.54 mm, 2.8 mm, 1.61 mm in 2 cm away from the center respectively. Sensitivity was 2.36% at the center of transaxial field of view. Scatter fraction was 20%. Maximal noise equivalent count ratio was 66.4 kcps at 242 kBq/mL. Small animal images were acquired for confirmation of performance. Conclusion: Performance characteristics of microPET R4 were similar with reported value. So this will be a useful tool for small animal imaging.

A Study on Image Reconstruction for Seed Localization for Permanent Prostate Brachytherapy (전립선암 근접치료 시 방사성선원 위치확인을 위한 영상 재구성에 관한 연구)

  • Hong, Ju-Young;Rah, Jeong-Eun;Suh, Tae-Suk
    • Radiation Oncology Journal
    • /
    • v.25 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • [ $\underline{Purpose}$ ]: This study was to design and fabricate a phantom for prostate cancer brachytherapy to validate a developed program applying a 3-film technique, and to compare it with the conventional 2-film technique for determining the location of an implanted seed. $\underline{Materials\;and\;Methods}$: The images were obtained from overlapped seeds by randomly placing a maximum of 63 seeds in the anterior-posterior (AP) position and at $-30^{\circ} to $30^{\circ} at $15^{\circ} intervals. Images obtained by use of the phantom were applied to the image processing procedure, and were then processed into the development program for seed localization. In this study, cases were set where one seed overlapped, where two seeds overlapped and where none of the three views resolved all seeds. The distance between the centers of each seed to the reference seed was calculated in a prescribed region. This distance determined the location of each seed in a given band. The location of the overlapped seeds was compared with that of the 2-film technique. $\underline{Results}$: With this program, the detection rate was 92.2% (at ${\pm}15^{\circ}), 94.1% (at ${\pm}30^{\circ}) and 70.6% (compared to the use of the 2-film technique). The overlaps were caused by one or more than two seeds that overlapped; the developed program can identify the location of each seed perfectly. However, for the third case the program was not able to resolve the overlap of the seeds. $\underline{Conclusion}$: This program can be used to improve treatment outcome for the brachytherapy of prostate cancer by reducing the number of errors in the process of reconstructing the locations of perfectly overlapped seeds.

A study on application of fractal structure on graphic design (그래픽 디자인에 있어서 프랙탈 구조의 활용 가능성 연구)

  • Moon, Chul
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.211-220
    • /
    • 2004
  • The Chaos theory of complexity and Fractal theory which became a prominent figure as a new paradigm of natural science should be understood not as whole, and not into separate elements of nature. Fractal Dimensions are used to measure the complexity of objects. We now have ways of measuring things that were traditionally meaningless or impossible to measure. They are capable of describing many irregularly shaped objects including man and nature. It is compatible method of application to express complexity of nature in the dimension of non-fixed number by placing our point of view to lean toward non-linear, diverse, endless time, and complexity when we look at our world. Fractal Dimension allows us to measure the complexity of an object. Having a wide application of fractal geometry and Chaos theory to the art field is the territory of imagination where art and science encounter each other and yet there has not been much research in this area. The formative word has been extracted in this study by analyzing objective data to grasp formative principle and geometric characteristic of (this)distinct figures of Fractals. With this form of research, it is not so much about fractal in mathematics, but the concept of self-similarity and recursiveness, randomness, devices expressed from unspeakable space, and the formative similarity to graphic design are focused in this study. The fractal figures have characteristics in which the structure doesn't change the nature of things of the figure even in the process if repeated infinitely many times, the limit of the process produces is fractal. Almost all fractals are at least partially self-similar. This means that a part of the fractal is identical to the entire fractal itself even if there is an enlargement to infinitesimal. This means any part has all the information to recompose as whole. Based on this scene, the research is intended to examine possibility of analysis of fractals in geometric characteristics in plasticity toward forms in graphic design. As a result, a beautiful proportion appears in graphic design with calculation of mathematic. It should be an appropriate equation to express nature since the fractal dimension allows us to measure the complexity of an object and the Fractla geometry should pick out high addition in value of peculiarity and characteristics in the complex of art and science. At the stage where the necessity of accepting this demand and adapting ourselves to the change is gathering strength is very significant in this research.

  • PDF