• Title/Summary/Keyword: 반도체 압력 센서

Search Result 49, Processing Time 0.022 seconds

Controller for Gas Leakage Protection in Semiconductor Process Chamber (반도체 제조장비용 챔버 가스누출 방지를 위한 제어모듈 개발)

  • Park Sung-Jin;Lee Eui-Yong;Sul Yong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.5
    • /
    • pp.373-377
    • /
    • 2005
  • In this paper the gas leakage controller in processing chamber for semiconductor manufacturing is proposed. A pressure sensor is connected between the final valve and the numeric valve. A pressure sensor signal and a numeric valve signal are controlled by a proposed digital circuit module. Gas leakage condition, producing by 2nd plasticity in semiconductor process, display at LED. The proposed controller module is useful for monitoring the gas flow for preventing the critical process gas leakage.

  • PDF

Design of Context-Aware System Using Multi-Sensor for Semiconductor Equipment (멀티센서를 이용한 반도체 장비의 상황인지 시스템 설계)

  • Jeon, Min-Ho;Jeong, Seung-Heui;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.547-549
    • /
    • 2010
  • In this paper, we propose context-aware system for semiconductor equipment that acquires information from multiple sensors in indoor environment. This proposed system acquires information from acceleration, pressure, temperature and gas sensors then the acquired information send to server. The data transmitted to server generates an alarm via context-aware algorithm of unit event and multi event. From that result, high-quality real-time monitoring is possible because of the reduced unnecessary alarms, and the efficient management is possible because the surrounding information is recognized at once.

  • PDF

압력센서용 다이아프램 제작을 위한 TMAH 의 식각특성 연구

  • 김좌연;윤의중;이석태;이태범;이희환
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.05a
    • /
    • pp.23-28
    • /
    • 2003
  • 본 논문에서는 MEMS 공정기술을 이용하는 압저항(piezoresistive) 압력센서용 다이아프램의 최적구조 제작을 위한 TMAH(Tetramethyl Ammonium Hydroxide)의 식각특성을 연구하였다. KOH, EDP 등 기존의 공정 수행에 있어서 부딪치게 되는 환경적 요인을 개선하고, 생산성 향상을 위해 독성이 없고 CMOS 집적회로 공정과 호환성이 높은 TMAH를 사용하여, 식각온도와 TMAH 농도 및 식각시간에 따른 에칭률 변화를 측정하였다. 식각온도가 증가 함에 따라, 그리고 TMAH 농도가 감소함에 따라, Si 에칭률은 증가하였으나 hillock 발생률이 증가하여 식각표면의 평탄화 정도가 나빠졌다. 이러한 단점을 AP(Ammonium Persulfate) 첨가제를 이용하여 해결하였다. l5wt% 농도의 TMAH 800ml 용액을 가지고 매 10분당 같은 양의 AP를 1시간당 5g이 되도록 첨가하여, 한변의 길이가 100~400 $\mu\textrm{m}$인 정사각형 모양을 가진 우수한 이방성 다이아프램을 성공적으로 제작하였다.

  • PDF

Data analysis for weather forecast system using pressure, temperature and humidity sensors (압력센서와 온습도센서를 이용한 일기예보 시스템의 개발을 위한 데이터 분석)

  • Kim, Won-Jae;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.253-258
    • /
    • 1999
  • This paper is written for the purpose of obtaining the information about the weather easily by the development of weather forecast system sensing temperature, humidity, and atmospheric pressure as key information. For this, data is obtained from the Weather Bureau, and analyzed in order to set a standard of weather forecast from the collected data. The pressure sensor and temperature-humidity sensor are fabricated using the piezoresistive effect of semiconductor, which are used to collect data. The weather forecast system is made using microprocessor.

  • PDF

Fabrication and Characteristics of FET-type Pressure Sensor Using Piezoelectric PZT Thin Film (압전체 PZT 박막을 이용한 FET형 압력 센서의 제작과 그 특성)

  • Kim, Young-Jin;Lee, Young-Chul;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.173-179
    • /
    • 2001
  • The currently used semiconductor pressure sensors are piezoresistive and capacitive type. Especially, semiconductor micro pressure sensors have a great deal of attention because of their small size. However, its fabrication processes are difficult, so that its yield is poor. For the purpose of resolving the drawbacks of the existing silicon pressure sensors, we demonstrate a new type of pressure sensor using PSFET(pressure sensitive field effect transistor) and investigate its operational characteristics. We used PZT(Pb(Zr,Ti)$O_3$) as a pressure sensing material. PZT thin films were deposited on a gate oxide of MOSFET by an rf-magnetron sputtering method. To abtain the stable phase, perovskite structure, furnace annealing technique have been employed in PbO ambient. The sensitivity of the PSFET was 0.38 mV/mmHg.

  • PDF

The Study of Fatigue Lifetime Evaluation on the Interconnect of semiconductor sensor according to the various materials (재료에 따른 반도체 센서 배선의 피로 수명 평가에 관한 연구)

  • Shim Jae-Joon;Ran Dong-seop;Ran Geun-Jo;Kim Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.283-288
    • /
    • 2005
  • Application of semiconductor sensors has widely spreaded into various industries because those have several merits like easy miniaturization and batch production comparison with previous mechanical sensors. But external conditions such as thermal and repetitive load have a bad effect on sensors's lifetime. Especially, this paper was focused on fatigue life of a interconnect made by various materials. Firstly we implemented the stress analysis for interconnect under thermal load and wording pressure. And the fatigue lifetime of each material was induced by Manson & Coffin Equation using the plastic stress-strain curve obtained by the plastic-elastic Finite Element Analysis.

  • PDF

Development of Pressure Monitoring System Using Silicon Pressure Sensor (실리콘 압력센서를 이용한 압력 모니터링 시스템 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.76-79
    • /
    • 2018
  • In this paper, we developed a pressure monitoring system using silicon pressure sensor. The pressure monitoring system was developed on the basis of a microcontroller, and a self-developed silicon pressure sensor was applied. The pressure monitoring system outputs the current pressure value via UART communication. In addition, it includes a function of displaying by LED when the preset three-step pressure (low, medium, high pressure) is reached. The silicon pressure sensor used in the pressure monitoring system was set to 0 kPa, 10 kPa, 26 kPa, and the pressure monitoring system was evaluated because the measured maximum pressure was in the range of 100 kPa.

Multiuser Detection of Electric Scooter Using Tilt and Pressure Sensors (기울기 센서와 압력 센서를 이용한 전동 킥보드용 다인승 감지 방안)

  • Moonjeong Ahn;Jia Kim;Jihoon Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.28-32
    • /
    • 2024
  • The personal mobility Sharing service is currently active. Especially, electric scooters are widely utilized because they can move comfortably at a high speed over a short distance with a simple driving method. Its driving method is easy, but there is no protection device to protect the bare body. So, there is a greater accident than other means of transportation, and if two people are on board, there is higher accident probability. However, since there is no specific ways to prevent multi-person boarding yet, we propose a multi-person boarding detection model using tilt and pressure sensor. The proposed method measures the tilt degree and direction by using a tilt sensor installed in the center of the board plate and detects multi-people riding.

  • PDF

A study on designing a level gauge for cryogenic liquefied storage vessel by using a differential pressure sensor (차압센서를 이용한 극저온 액화가스 저장용기의 액면측정장치 설계에 관한 연구)

  • Choi, Dong-Joon;Lim, Hyung-Il;Doh, Deog-Hee;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.384-390
    • /
    • 2013
  • The sizes of cryogenic vessels and storage tanks are becoming bigger due to strong demands from semiconductor and LCD industry as well as high-tech electronic industry. Conventional level and pressure gauges used for cryogenic vessels were analog types which made exact measurement difficult for the remained quantity at lower levels due to their poor accuracy. In this study, a design for a digital type gas level gauge which can measure the pressure and level inside of the cryogenic liquefied gas storage tanks has been proposed by using a differential pressure sensor, in which the measured data are monitored by a host PC and are transferred to a mobile printer for data confirmation at local station.