• Title/Summary/Keyword: 반도체센서

Search Result 509, Processing Time 0.031 seconds

CdZnTe Detector for Computed Tomography based on Weighting Potential (가중 퍼텐셜에 기초한 CT용 CdZnTe 소자 설계)

  • Lim, Hyunjong;Park, Chansun;Kim, Jungsu;Kim, Jungmin;Choi, Jonghak;Kim, KiHyun
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • Room-temperature operating CdZnTe(CZT) material is an innovative radiation detector which could reduce the patient dose to one-tenth level of conventional CT (Computed Tomography) and mammography system. The pixel and pixel pitch in the imaging device determine the conversion efficiency of incident X-or gamma-ray and the cross-talk of signal, that is, image quality of detector system. The weighting potential is the virtual potential determined by the position and geometry of electrode. The weighting potential obtained by computer-based simulation in solving Poisson equation with proper boundaries condition. The pixel was optimized by considering the CIE (charge induced efficiency) and the signal cross-talk in CT detector system. The pixel pitch was 1-mm and the detector thickness was 2-mm in the simulation. The optimized pixel size and inter-pixel distance for maximizing the CIE and minimizing the signal cross-talk is about $750{\mu}m$ and $125{\mu}m$, respectively.

진공 측정 기술 개발 동향

  • Sin, Yong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.3-3
    • /
    • 2010
  • 이번 성원에드워드 학술상 수상자 선정은, 진공기술의 중요성에 공감하고 진공기술 발전을 위한 노력을 독려하자는 진공학회 회원들의 의견을 모아주신 결과로 생각한다. 본 발표에서는 그동안 한국표준과학연구원에서 수행해 온 진공 기술 연구 및 산학연 협력 네트워크 활동을 소개하고자 한다. 진공기술은 진공 환경을 발생시키고 측정 제어하며, 만들어진 진공 환경 안에서 원하는 작업을 할 수 있도록 하는 기술을 말한다. 우리나라의 주력산업인 반도체 및 디스플레이의 경우 그 생산 설비의 1/3이상이 진공 장비이며 진공 공정을 통해 만들어진다. 때문에 우리나라에서는 주력 산업분야나 그 전후방 산업의 경쟁력 강화 측면에서 진공기술 개발 중요성이 아주 크다. 한국표준과학연구원은 국가 대표 측정 기관으로 국가 측정 표준을 확립하고 측정관련 과학기술을 연구개발하며 그 성과를 보급하여 경제발전과 과학기술발전, 그리고 삶의 질 향상에 기여하는 것을 임무로 하고 있다. 우리나라에서 진공 측정 표준에 대한 연구가 본격적으로 시작된 것은 1984년으로 불용 장비로 불하받은 펌프와 챔버, 그리고 차관으로 도입된 Capacitance Diaphragm Gauge 몇 개만으로 시작되었다. 지금은 발전을 거듭하여 초음파 간섭 수은주 압력계를 비롯하여 정적 팽창시스템, 동적 팽창 시스템 등 진공도 범위별 국가 표준기와 리크 표준기를 자체 개발 하여 국가 측정 표준을 확립하고 있다. 우리나라의 진공 표준 및 측정 능력은 국제기구인BIPM에서 실시하는 국가 측정능력 비교시험을 통해 세계 최고 수준으로 인정 받은 바 있으며 교정검사 등을 통해 산학연에 보급되고 있다. 진공 측정 및 표준기술을 토대로, 1999년부터 과학기술부와 산업자원부의 지원을 받아 산학연이 필요로 하는 펌프 계측기 부품 소재 및 공정 특성을 평가하기 위한 장치와 절차를 개발하였다. 이를 이용해 보급되는 기술 data는 진공부품 및 장비 국산화, 국산제품 신뢰성 제고, 검증부품 사용을 통한 장비 품질 향상, 독자적 장비 기술 확보, 생산품 품질관리 등에 쓰이고 있다. 한국 표준연구원 진공센터의 교정 및 시험 능력은 ISO 9001 인증 획득과 국제 전문가의 review를 거쳐, 국제기구 측정능력표에 등재되어 있어 국제적 신뢰도도 확보하고 있다. 정기적인 진공기술 교류회를 개최하고 진공기술 홈페이지를 운영 하는 등 산학연 정보 교류 및 협력 네트워킹 활성화를 위해 노력한 바 있으며 이 분야의 연구 성과는 '국가 우수 연구성과 100선'에 선정된 바 있고, 산업자원부 지정 '산학연 연계 우수사례' 첫 번째로 선정되기도 하였다. 2008년부터는 진공기술 교류회 등을 통한 네트워킹 활동으로 도출된 기술 수요에 따라 대기업과 중소기업 학교 연구소들과 함께 진공공정 실시간 측정 진단 기술과 센서 개발 연구, 그리고 이들 개발품의 신뢰성 검증 및 평가 기술 개발을 위해 노력하고 있다.

  • PDF

Design of Synchronous 256-bit OTP Memory (동기식 256-bit OTP 메모리 설계)

  • Li, Long-Zhen;Kim, Tae-Hoon;Shim, Oe-Yong;Park, Mu-Hun;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1227-1234
    • /
    • 2008
  • In this paper is designed a 256-bit synchronous OTP(one-time programmable) memory required in application fields such as automobile appliance power ICs, display ICs, and CMOS image sensors. A 256-bit synchronous memory cell consists of NMOS capacitor as antifuse and access transistor without a high-voltage blocking transistor. A gate bias voltage circuit for the additional blocking transistor is removed since logic supply voltage VDD(=1.5V) and external program voltage VPPE(=5.5V) are used instead of conventional three supply voltages. And loading current of cell to be programmed increases according to RON(on resistance) of the antifuse and process variation in case of the voltage driving without current constraint in programming. Therefore, there is a problem that program voltage can be increased relatively due to resistive voltage drop on supply voltage VPP. And so loading current can be made to flow constantly by using the current driving method instead of the voltage driving counterpart in programming. Therefore, program voltage VPP can be lowered from 5.9V to 5.5V when measurement is done on the manufactured wafer. And the sens amplifier circuit is simplified by using the sens amplifier of clocked inverter type instead of the conventional current sent amplifier. The synchronous OTP of 256 bits is designed with Magnachip $0.13{\mu}m$ CMOS process. The layout area if $298.4{\times}314{\mu}m2$.

Tuning Electrical Performances of Organic Charge Modulated Field-Effect Transistors Using Semiconductor/Dielectric Interfacial Controls (유기반도체와 절연체 계면제어를 통한 유기전하변조 트랜지스터의 전기적 특성 향상 연구)

  • Park, Eunyoung;Oh, Seungtaek;Lee, Hwa Sung
    • Journal of Adhesion and Interface
    • /
    • v.23 no.2
    • /
    • pp.53-58
    • /
    • 2022
  • Here, the surface characteristics of the dielectric were controlled by introducing the self-assembled monolayers (SAMs) as the intermediate layers on the surface of the AlOx dielectric, and the electrical performances of the organic charge modulated transistor (OCMFET) were significantly improved. The organic intermediate layer was applied to control the surface energy of the AlOx gate dielectric acting as a capacitor plate between the control gate (CG) and the floating gate (FG). By applying the intermediate layers on the gate dielectric surface, and the field-effect mobility (μOCMFET) of the OCMFET devices could be efficiently controlled. We used the four kinds of SAM materials, octadecylphosphonic acid (ODPA), butylphosphonic acid (BPA), (3-bromopropyl)phosphonic acid (BPPA), and (3-aminopropyl)phosphonic acid (APPA), and each μOCMFET was measured at 0.73, 0.41, 0.34, and 0.15 cm2V-1s-1, respectively. The results could be suggested that the characteristics of each organic SAM intermediate layer, such as the length of the alkyl chain and the type of functionalized end-group, can control the electrical performances of OCMFET devices and be supported to find the optimized fabrication conditions, as an efficient sensing platform device.

Efficient Multicasting Mechanism for Mobile Computing Environment Machine learning Model to estimate Nitrogen Ion State using Traingng Data from Plasma Sheath Monitoring Sensor (Plasma Sheath Monitoring Sensor 데이터를 활용한 질소이온 상태예측 모형의 기계학습)

  • Jung, Hee-jin;Ryu, Jinseung;Jeong, Minjoong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.27-30
    • /
    • 2022
  • The plasma process, which has many advantages in terms of efficiency and environment compared to conventional process methods, is widely used in semiconductor manufacturing. Plasma Sheath is a dark region observed between the plasma bulk and the chamber wall surrounding it or the electrode. The Plasma Sheath Monitoring Sensor (PSMS) measures the difference in voltage between the plasma and the electrode and the RF power applied to the electrode in real time. The PSMS data, therefore, are expected to have a high correlation with the state of plasma in the plasma chamber. In this study, a model for predicting the state of nitrogen ions in the plasma chamber is training by a deep learning machine learning techniques using PSMS data. For the data used in the study, PSMS data measured in an experiment with different power and pressure settings were used as training data, and the ratio, flux, and density of nitrogen ions measured in plasma bulk and Si substrate were used as labels. The results of this study are expected to be the basis of artificial intelligence technology for the optimization of plasma processes and real-time precise control in the future.

  • PDF

Recent Developments in Quantum Dot Patterning Technology for Quantum Dot Display (양자점 디스플레이 제작을 위한 양자점 패터닝 기술발전 동향)

  • Yeong Jun Jin;Kyung Jun Jung;Jaehan Jung
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.169-179
    • /
    • 2024
  • Colloidal quantum dot (QDs) have emerged as a crucial building block for LEDs due to their size-tunable emission wavelength, narrow spectral line width, and high quantum efficiency. Tremendous efforts have been dedicated to improving the performance of quantum dot light-emitting diodes (QLEDs) in the past decade, primarily focusing on optimization of device architectures and synthetic procedures for high quality QDs. However, despite these efforts, the commercialization of QLEDs has yet to be realized due to the absence of suitable large-scale patterning technologies for high-resolution devices., This review will focus on the development trends associated with transfer printing, photolithography, and inkjet printing, and aims to provide a brief overview of the fabricated QLED devices. The advancement of various quantum dot patterning methods will lead to the development of not only QLED devices but also solar cells, quantum communication, and quantum computers.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF

Research for Space Activities of Korea Air Force - Political and Legal Perspective (우리나라 공군의 우주력 건설을 위한 정책적.법적고찰)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.18
    • /
    • pp.135-183
    • /
    • 2003
  • Aerospace force is a determining factor in a modem war. The combat field is expanding to space. Thus, the legitimacy of establishing aerospace force is no longer an debating issue, but "how should we establish aerospace force" has become an issue to the military. The standard limiting on the military use of space should be non-aggressive use as asserted by the U.S., rather than non-military use as asserted by the former Soviet Union. The former Soviet Union's argument is not even strongly supported by the current Russia government, and realistically is hard to be applied. Thus, the multi-purpose satellite used for military surveillance or a commercial satellite employed for military communication are allowed under the U.S. principle of peaceful use of space. In this regard, Air Force may be free to develop a military surveillance satellite and a communication satellite with civilian research institute. Although MTCR, entered into with the U.S., restricts the development of space-launching vehicle for the export purpose, the development of space-launching vehicle by the Korea Air Force or Korea Aerospace Research Institute is beyond the scope of application of MTCR, and Air Force may just operate a satellite in the orbit for the military purpose. The primary task for multi-purpose satellite is a remote sensing; SAR sensor with high resolution is mainly employed for military use. Therefore, a system that enables Air Force, the Korea Aerospace Research Institute, and Agency for Defense Development to conduct joint-research and development should be instituted. U.S. Air Force has dismantled its own space-launching vehicle step by step, and, instead, has increased using private space launching vehicle. In addition, Military communication has been operated separately from civil communication services or broadcasting services due to the special circumstances unique to the military setting. However, joint-operation of communication facility by the military and civil users is preferred because this reduces financial burden resulting from separate operation of military satellite. During the Gulf War, U.S. armed forces employed commercial satellites for its military communication. Korea's participation in space technology research is a little bit behind in time, considering its economic scale. In terms of budget, Korea is to spend 5 trillion won for 15 years for the space activities. However, Japan has 2 trillion won annul budget for the same activities. Because the development of space industry during initial fostering period does not apply to profit-making business, government supports are inevitable. All space development programs of other foreign countries are entirely supported by each government, and, only recently, private industry started participating in limited area such as a communication satellite and broadcasting satellite, Particularly, Korea's space industry is in an infant stage, which largely demands government supports. Government support should be in the form of investment or financial contribution, rather than in the form of loan or borrowing. Compared to other advanced countries in space industry, Korea needs more budget and professional research staff. Naturally, for the efficient and systemic space development and for the prevention of overlapping and distraction of power, it is necessary to enact space-related statutes, which would provide dear vision for the Korea space development. Furthermore, the fact that a variety of departments are running their own space development program requires a centralized and single space-industry development system. Prior to discussing how to coordinate or integrate space programs between Agency for Defense Development and the Korea Aerospace Research Institute, it is a prerequisite to establish, namely, "Space Operations Center"in the Air Force, which would determine policy and strategy in operating space forces. For the establishment of "Space Operations Center," policy determinations by the Ministry of National Defense and the Joint Chief of Staff are required. Especially, space surveillance system through using a military surveillance satellite and communication satellite, which would lay foundation for independent defense, shall be established with reference to Japan's space force plan. In order to resolve issues related to MTCR, Air Force would use space-launching vehicle of the Korea Aerospace Research Institute. Moreover, defense budge should be appropriated for using multi-purpose satellite and communication satellite. The Ministry of National Defense needs to appropriate 2.5 trillion won budget for space operations, which amounts to Japan's surveillance satellite operating budges.

  • PDF