• Title/Summary/Keyword: 박판보

Search Result 80, Processing Time 0.027 seconds

Vibration-Based Nondestructive Evaluation of Thermal Stress-Induced Damage in Thin Composite Laminates (복합 적층 박판의 열응력 파손에 대한 진동 활용 비파괴평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam;Lee, Jong-Ki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.347-355
    • /
    • 1999
  • A feasibility investigation on vibration-based nondestructive evaluation of thermal stress-induced micro-failure in the free edge region of thin composite laminates(1mm thick) has been carried out. The failure occurrence and damage zone, which were predicted by the three-dimensional finite-element thermal stress analysis, were observed using the ultrasonic C-scan and optical microscopy. Analysis of the vibration spectrum measured from the laminate beam specimens by the vibration sweep test exhibited that the obvious decrease in resonancy frequency and some considerable increase in damping factor were associated with the micro-failure formation. The vibration technique utilizing short beam and high resonant frequency was found to be very sensitive to the thermal stress-induced damage in the thin laminates.

  • PDF

Forced-Vibration-Based Identification of Stiffness Reduction Distribution in Thin Plates with an Arbitrary Damage Shape (임의의 손상형태를 갖는 박판의 강제진동 기반 강성저하 분포 규명)

  • Song, Yoo-Seob;Lee, Sang-Youl;Park, Tae-Hyo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • This study deals with a method to identify structural damage using the combined finite element method (FEM) and the advanced damage search technique. The novelty of this study is the application of plates with arbitrary damage shapes and their response due to the anomalies in a structure subjected to impact loading. The technique described in this paper may allow us not only to detect the stiffness distribution of the damaged areas but also to find locations and the extent of damage. To demonstrate the feasibility of the method, the algorithm is applied to a steel thin plate structures with an arbitrary damage shape. The results demonstrate the excellencies of the method from the standpoints of computation efficiency as well as its ability to investigate the arbitrary stiffness reductions.

Gonad Structure and Reproductive Cycle of the Smallmouth Scorpionfish, Scorpaena miostoma (Teleostei: Scorpaenidae) (쭈굴감펭 (Scorpaena miosfoma)의 생식소 구조 및 생식주기)

  • LEE Jung Sick;KANG Ju-Chan;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.4
    • /
    • pp.627-633
    • /
    • 1997
  • Gonad structure, germ cell development and reproductive cycle of the smallmouth scorpionfish, Scorpaena miostoma were investigated based on histological method. Samples were collected monthly in the vicinity of Suyoung Bay, Pusan, Korea from November 1995 to October 1996. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consists of numerous testicular cysts which contain numerous germ cells in same developmental stage. The ovary consists of several ovarian lamellae originated from ovarian outer membrane. Oogonia originated from the inner surface of the ovarian lamella protrude to the ovarian cavity in oocyte stage, and they are suspended by the egg stalk. Biological minimum size of female and male were 12.5cm in total length. Gonadosomatic index (GSI) of female (3.81) and male (0.23) were the highest in October. Reproductive cycle was classified into the following successive stages: in female, growing stage $(May\~August)$, maturation stage $(September\~October)$, ripe and spawning stage $(November\~December)$, recovery and resting stage $(January\~April)$, and in male, growing stage $(June\~August)$, maturation stage $(September\~October)$, ripe and spent stage $(November\~January)$ and recovery and resting stage $(February\~May)$.

  • PDF

Reproductive Cycle of the Goldeye Rockfish, Sebastes thompsoni (Teleostei: Scorpaenidae) (불볼락(Sebastes thompsoni)의 생식주기)

  • LEE Jung Sick;AN Cheul Min;HUH Sung-Hoi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.1
    • /
    • pp.8-16
    • /
    • 1998
  • Sexual maturation and reproductive cycle of the goldeye rockfish, Sebastes thompsoni were investigated under photomicroscopy. Samples were collected monthly in the coastal water of Samcheonpo ($34^{\circ}55'N$ ), Korea from November 1995 to October 1996, The ovary consists of several ovarian lamellae originated from ovarian outer membrane. Oogonia which are originated from the inner surface of the ovarian lamella protrude to the ovarian cavity in oocyte stage, and they ave suspended by the egg stalk. The testis is seminiferous tubule type in internal structure. Seminiferous tubule consists of many testicular cysts which contain numerous germ cells in same developmental stage. Biological minimum size of female and male were 19.5 cm and 21.5 cm in total length, respectively. Gonadosomatic index (GSI) of female was the highest (9.56) in March and the lowest (0.15) in August. GSI of male was the highest (0.25) in February and the lowest (0.04) in July. Reproductive cycle was classified into the following successive stages: in female, growing (October and November), maturation ( $December\~February$), gestation (March), parturition and recovery ($April\~June$) and resting ($July\~September$), and in male, growing ($September\~November$), maturation ( December and January), ripe and copulation ( February and March) and degeneration and resting ($April\~August$).

  • PDF

Simplified Collapse Analysis of Ship Transverse Structures (선체 횡구조물의 단순화된 최종 강도 해석)

  • P.D.C.,Yang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 1989
  • In this paper, a theory for the static analysis of large plastic deformations of 3-dimensional frames, aiming at application to the collapse analysis of ship structures, is presented. In the frame analysis formulation, effects of shear deformations are included. A plastic hinge is inserted into the field of a beam end, and post. failure deformation of the plastic hinge is characterized by finite rotations and extensions. In order to model deep web frames of ship's structures into a framed structures, collapse of thin-walled plate girders is investigated. The proposed analysis method is applied to several ship structural models in the references.

  • PDF

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

A Study on the Progressive Die Development of Sheet Metal Forming Part (박판 포밍제품의 프로그레시브 금형개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • The production parts have required multiple processes such as drawing, piercing, blanking and notching etc. are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimization of strip process layout design, die design, die making, and tryout etc. are needed. According to these factors of die development process, it has been required that the theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die components, processing know-how and so on. In this study, we designed and analyzed die components through the carrying out of upper relevant matters also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis became to the feature of this study with a system of PDDC(Progressive Die design by computer).

  • PDF

An Experimental Study on Flexural Strength of Lip-Type Modular Steel Concrete Beam (Lip-Type 모듈형 SC보의 휨내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Shin, Il Kyoun;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2006
  • In this paper, the basic data regarding the application of the MSC (Modular Steel Concrete) beam are presented by comparing the experimental value with the theoretical value, focusing on the bending behavior of the Lip-type MSC beam, which is composed of steel and concrete. Considerable manpower is needed to fabricate the traditional MSC beam, particularly for the tasks of cutting, welding, etc. Because much time is needed to fabricate the traditional SC beam, the prefabrication concept is introduced, easily produce the required size of the SC beam by prefabricating the side module and the lower module, which is made up of a steel sheet. The result indicates that the method of uniting the modules, an d the composition method with concrete, should be improved. The proposed MSC beam can be used as a new structural member by increasing its coherent reinforcement with modules and the composition ratio of steel and concrete through a future study.

Behavior of Horizontally Curved I-Girder Bridges under Seismic Loading (지진하중하에서의 수평곡선I형교의 거동특성)

  • Yoon, Ki Yong;Sung, Ik Hyun;Choi, Jin Yu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.793-802
    • /
    • 2002
  • This study presented a finite element formulation for the dynamic analysis of horizontally curved I-girder bridges. The stiffness and mass matrices of the curved and the straight beam elements are formulated. Each node of both elements has seven degrees of freedom, including the warping degree of freedom. The curved beam element is derived from Kang and Yoo's theory of thin-walled curved beams. The computer program EQCVB has been developed to perform dynamic analyses of various horizontally curved I-girder bridges. The Gupta method is used to solve the eigenvalue problem efficiently, while the Wilson-${\theta}$ method is used for the seismic analysis. The efficiency of EQCVB is demonstrated by comparing solution time with ABAQUS. Using EQCVB, the study is applied to investigate the dynamic behavior of horizontally curved I-girder bridges under seismic loading.

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF