• Title/Summary/Keyword: 박스암거

Search Result 21, Processing Time 0.024 seconds

Research on the Load Reduction Effect Using EPS (EPS의 압축성을 이용한 토압저감효과에 관한 연구)

  • 김진만;조삼덕;최봉혁;오세용
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2004
  • For the last 30 years, the use of EPS as a lightweight filling material has grown significantly throughout the world. The fields of applying EPS block have also increased. The most representative example in geotechnical applications is using EPS block as a compressible inclusion that causes the reduction of static earth pressure on earth-retaining wall, bridge abutment and pipes. EPS blocks have a good workability by its lightweight characteristic and a uniform engineering property with the change of its density. Also EPS blocks have best material property as a compressible inclusion. This paper analyzes that the compressible inclusion function of EPS causes the reduction of static earth pressure on retaining wall and concrete box culvert. A series of in-situ tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on in-situ test, it is found that the magnitude of static earth pressure was reduced to about 20% for the retaining wall and about 45∼53% for the box culvert compared with theoretical active earth pressure.

Monitoring the Wildlife Use of Culverts and Underpasses Using Snow Tracking in Korea (야생동물의 도로 횡단 특성 분석 -도로횡단구조물 상의 눈 위 발자국 조사를 통하여-)

  • Choi Tae-Young;Lee Yong-Wook;Whang Ki-Young;Kim Seon-Myoung;Park Moon-Sun;Park G-Rim;Cho Beom-Joon;Park Chong-Hwa;Lee Myung-Woo
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.3
    • /
    • pp.340-344
    • /
    • 2006
  • The objective of this paper was to investigate the potential of road-crossing structures as biological corridors that can overcome wildlife habitat fragmentation caused by road construction. Snow tracking on animal trace adjacent to and under bridges, underpasses, and culverts of eight rural highways in Korea was carried out. A total 89 structures were monitored and the results follow. First, the probability of road crossing increases with the increasing cross sectional size of crossing structures. Second, small to medium sized carnivores such as raccoon dog, leopard cat, and Siberian weasel use all types of structures. Finally, water deer, or large herbivore crossed only under bridges. Consequently, further studies are necessary to identify suitable types of road crossing structures that can mitigate the probability of road-kills and habitat fragmentation of water deer.

A Study on Flexural Behavior of Precast Box Culvert with Blast Slag (고로슬래그 미분말을 혼입한 프리캐스트 박스 암거의 휨 강도에 관한 연구)

  • Tae, Ghi-Ho;Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • In this study, the effect of blast furnace slag on precast concrete culvert was assessed by measuring the flexural strength using to full scaled box culvert. As a result, the initial cracking load and yield load of reinforced concrete box converts are increased in comparison with those of the normal concrete box culvert, but the ultimate load is decreased slightly. It can be concluded that use of blast furnace slag induce to flexural strength in precast concrete box culvert greatly improved the serviceability.

Connections of the Corrugated Steel Plate Culvert with the Concrete Box (신설 파형강판 지중암거의 기존 콘크리트 박스 접합부 해석)

  • 조성민;변순주
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.373-378
    • /
    • 2000
  • Zinc galvanized steel plates(sections) of annular corrugations have been used in buried steel culverts. These structures are referred to by a variety of names such as flexible pipes, buried pipes, soil-steel bridges, corrugated steel culverts, and etc. Buried corrugated steel structures show flexible behaviour under the soil load. compared with concrete box structures. Finite element analysis was performed to suggest the reasonable connecting method between the flexible steel culverts and the rigid concrete box. It was predicted that perfectly constrained connections could induce the excessive stress in steel plates. Therefore elastic bearing connections that allow vertical displacement at the connecting point were applied.

  • PDF

Behavior of Precast Concrete Box Culvert Using Expansive Cement (팽창시멘트를 이용한 프리캐스트 콘크리트 박스 암거의 거동에 관한 연구)

  • Jo, Byung-Wan;Tae, Ghi-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.159-169
    • /
    • 2002
  • This study is intended to discuss the application of expansive additives for concrete to improve the durability of precast concrete box culvert by inducing the chemical prestress. The precast concrete box culvert using expansive cement are tested to verify the effect of expansive additives. The results show that the initial cracking load and yielding load of the expansive cement numbers are increased when they are compared with those of the normal concrete. In the prototype precast concrete box culvert experiment, initial crack control effect and strength of joint are increased, but the deflection is decreased by expansive cement. Brides, reinforcement ratio is decreased about 14.6 percent in compering with the case of using normal cement. If can be the concluded that the use of expansive additives to induce the chemical prestress was improve the durability in concrete box culvert.

Optimal Joint Position in Concrete Pavement Slab over Skewed Box Culvert (수평으로 경사진 박스암거 위 콘크리트 포장 슬래브의 최적 줄눈위치)

  • Yeom, Woo Seong;Jeong, Ho Seong;Yan, Yu;Sohn, Dueck Soo;Lee, Jae Hoon;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.47-55
    • /
    • 2013
  • PURPOSES : The purpose of this study is to investigate the optimal joint positions which can minimize distresses of concrete pavement containing box culvert with horizontally skewed angles. METHODS : The concrete pavement containing the box culvert with different skewed angles and soil cover depths was modeled by 3 dimensional finite element method. The contact boundary condition was used between concrete and soil structures in addition to the nonlinear material property of soil in the finite element model. A dynamic analysis was performed by applying the self weight of pavement, negative temperature gradient of slab, and moving vehicle load simultaneously. RESULTS : In case of zero skewed angle ($0^{\circ}$), the maximum tensile stress of slab was the lowest when the joint was positioned directly over side of box culvert. In case there was a skewed angle, the maximum tensile stress of slab was the lowest when the joint passed the intersection between side of the box culvert and longitudinal centerline of slab. The magnitude of the maximum tensile stress converged to a constant value regardless the joint position from 3m of soil cover depth at all of the horizontally skewed angles. CONCLUSIONS : More reasonable and accurate design of the concrete pavement containing the box culvert can be possible based on the research results.

Improvement of Structural Performance for the Precast Box Culvert (지하 프리캐스트 박스 암거의 구조적 성능 개선에 관한 연구)

  • 조병완;태기호;이계삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.393-398
    • /
    • 2000
  • To use concrete box culverts effectively, precast goods are manufactured at a factory, then linked and anchored with prestressing tendon at a field. However, the corrosion of rebar and prestressing tendon in the box culverts utilizing portland cement concrete is issued when the cracks occur at a underground water level. It has been reported that reported that expansive concrete, compared with portland cement concrete, has many structural advantages such as increasing capacity of watertight, controling initial crack and improving durability due to its property of expansion. During flexure test with RC beam made from expansive concrete, in the case of a constant section of concrete element, the lower steel ratio is, and in the case of a constant steel ratio, the more incremental the section of concrete element, the more incremental the amount of chemical prestress by expansive concrete is. At the segment of the box culverts using expansive concrete, the numbers of crack and its gap is reduced, and ultimate load and initial crack load is much larger than the segment at which expansive concrete is nor used. Also lay-out of tendon with a curvature generate upward force so that deflection is reduced. Through the whole procedure, it could be confirmed that performance precast box culvert by means of using expansive concrete is improved.

  • PDF

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF

Behavior of Jointed Concrete Pavement by Box Culvert and Reinforced Slab (박스형 암거와 보강슬래브에 의한 줄눈 콘크리트 포장의 거동)

  • Park, Joo Young;Sohn, Dueck Su;Lee, Jae Hoon;Yan, Yu;Jeong, Jin Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.25-35
    • /
    • 2012
  • PURPOSES : Hollows are easily made, and bearing capacity can be lowered near underground structures because sublayers of pavement settle for a long time due to difficult compaction at the position. If loadings are applied in this condition, distresses may occur in pavement and, as the result, its lifespan can decrease due to the stress larger than that expected in design phase. Although reinforced slab is installed on side of box culvert to minimize the distresses, length of the reinforced slab is fixed as 6m in Korea without any theoretical consideration. The purpose of this paper is investigating the behavior of concrete pavement according to the cover depth of the box culvert ad the length of the reinforced slab. METHODS : The distresses of concrete pavement slabs were investigated and cover depth was surveyed at position where the box culverts were located in expressways. The concrete pavements including the box culverts were modeled by finite element method and their behaviors according to the soil cover depth were analyzed. Wheel loading was applied after considering self weight of the pavement and temperature gradient of the concrete pavement slab at Yeojoo, Gyeonggi where a test road was located. After installing pavement joint at various positions, behavior of the pavement was analyzed by changing the soil cover depth and length of the reinforced slab. RESULTS : As the result, the tensile stress developed in the pavement slab according to the joint position, cover depth, and reinforced slab length was figured out. CONCLUSIONS : More reasonable and economic design of the concrete pavement including the box culvert is expected by the research results.

A Evaluation on the Field Application of Ductile Fiber Reinforced Cement Composites (고인성 섬유보강 시멘트 복합체의 현장 적용성 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Park, Jung-Jun;Kang, Su-Tae;Kim, Sung-Wook;Park, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.941-944
    • /
    • 2008
  • Various ductile fiber reinforced cement composite(DFRCC) including large quantities of PVA fiber or steel fiber have been developed recently and studies to find applications in diverse domains are currently conducted actively. Regard to economical efficiency, DFRCC becomes competitive when applied as special elements and repair material with small quantities rather than the casting of large volume for the main body of structures in field. The authors have developed FRP-DFRCC composite slab for bridges and a wet spraying repair technique using DFRCC. In case of the application on FRP-DFRCC composite slab, it was found that there was no problems the structure and durability of it after passed 3 months. And in case of the application on the application of the deteriorated sewage box that passed 20 years, it was found that there was no difference the repair performance between domestic PVA fiber and the Japan. Therefore, DFRCC using PVA fiber, the concrete structures can be increased to performance and secured the economical efficiency.

  • PDF