• Title/Summary/Keyword: 박스모델

Search Result 335, Processing Time 0.026 seconds

Deep Learning-based Parcel Detection and Classification System Development Research. (딥러닝 기반 택배 탐지 및 분류 시스템 개발 연구)

  • Son, Seongho;Choi, Donggyu;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.323-325
    • /
    • 2021
  • The size of the delivery market in Korea is growing year by year. In recent years, the growth rate has skyrocketed due to the aftermath of the coronavirus. Looking at the domestic delivery market's volume trend in 2020, about 3.4 billion boxes increased by 21% compared to about 2.8 billion boxes last year. In addition, sales amounted to 7.5 trillion won, an increase of about 19% compared to 6.3 trillion won a year earlier. As the delivery market grows, the proportion of courier damage relief is also occurring at a considerable rate. About 33% of 1,000 people have experienced delivery accidents, and about 41% of the week have experienced damage or damage. In this paper, a deep learning model capable of detecting a parcel was created to detect a damaged parcel. A system that can check the performance of this model and detect and classify parcels during the delivery process using a real-time detection camera was studied.

  • PDF

The Enhancement of intrusion detection reliability using Explainable Artificial Intelligence(XAI) (설명 가능한 인공지능(XAI)을 활용한 침입탐지 신뢰성 강화 방안)

  • Jung Il Ok;Choi Woo Bin;Kim Su Chul
    • Convergence Security Journal
    • /
    • v.22 no.3
    • /
    • pp.101-110
    • /
    • 2022
  • As the cases of using artificial intelligence in various fields increase, attempts to solve various issues through artificial intelligence in the intrusion detection field are also increasing. However, the black box basis, which cannot explain or trace the reasons for the predicted results through machine learning, presents difficulties for security professionals who must use it. To solve this problem, research on explainable AI(XAI), which helps interpret and understand decisions in machine learning, is increasing in various fields. Therefore, in this paper, we propose an explanatory AI to enhance the reliability of machine learning-based intrusion detection prediction results. First, the intrusion detection model is implemented through XGBoost, and the description of the model is implemented using SHAP. And it provides reliability for security experts to make decisions by comparing and analyzing the existing feature importance and the results using SHAP. For this experiment, PKDD2007 dataset was used, and the association between existing feature importance and SHAP Value was analyzed, and it was verified that SHAP-based explainable AI was valid to give security experts the reliability of the prediction results of intrusion detection models.

Empirical Study on Correlation between Performance and PSI According to Adversarial Attacks for Convolutional Neural Networks (컨벌루션 신경망 모델의 적대적 공격에 따른 성능과 개체군 희소 지표의 상관성에 관한 경험적 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.2
    • /
    • pp.113-120
    • /
    • 2024
  • The population sparseness index(PSI) is being utilized to describe the functioning of internal layers in artificial neural networks from the perspective of neurons, shedding light on the black-box nature of the network's internal operations. There is research indicating a positive correlation between the PSI and performance in each layer of convolutional neural network models for image classification. In this study, we observed the internal operations of a convolutional neural network when adversarial examples were applied. The results of the experiments revealed a similar pattern of positive correlation for adversarial examples, which were modified to maintain 5% accuracy compared to applying benign data. Thus, while there may be differences in each adversarial attack, the observed PSI for adversarial examples demonstrated consistent positive correlations with benign data across layers.

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.

Improving prediction performance of network traffic using dense sampling technique (밀집 샘플링 기법을 이용한 네트워크 트래픽 예측 성능 향상)

  • Jin-Seon Lee;Il-Seok Oh
    • Smart Media Journal
    • /
    • v.13 no.6
    • /
    • pp.24-34
    • /
    • 2024
  • If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.

A Method to Manage Faults in SOA using Autonomic Computing (자율 컴퓨팅을 적용한 SOA 서비스 결함 관리 기법)

  • Cheun, Du-Wan;Lee, Jae-Yoo;La, Hyun-Jung;Kim, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.12
    • /
    • pp.716-730
    • /
    • 2008
  • In Service-Oriented Architecture (SOA), service providers develop and deploy reusable services on the repositories, and service consumers utilize blackbox form of services through their interfaces. Services are also highly evolvable and often heterogeneous. Due to these characteristics of the service, it is hard to manage the faults if faults occur on the services. Autonomic Computing (AC) is a way of designing systems which can manage themselves without direct human intervention. Applying the key disciplines of AC to service management is appealing since key technical issues for service management can be effectively resolved by AC. In this paper, we present a theoretical model, Symptom-Cause-Actuator (SCA), to enable autonomous service fault management in SOA. We derive SCA model from our rigorous observation on how physicians treat patients. In this paper, we first define a five-phase computing model and meta-model of SCA. And, we define a schema of SCA profile, which contains instances of symptoms, causes, actuators and their dependency values in a machine readable form. Then, we present detailed algorithms for the five phases that are used to manage faults the services. To show the applicability of our approach, we demonstrate the result of our case study for the domain of 'Flight Ticket Management Services'.

Verification and Estimation of the Contributed Concentration of CH4 Emissions Using the WRF-CMAQ Model in Korea (WRF-CMAQ 모델을 이용한 한반도 CH4 배출의 기여농도 추정 및 검증)

  • Moon, Yun-Seob;Lim, Yun-Kyu;Hong, Sungwook;Chang, Eunmi
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • The purpose of this study was to estimate the contributed concentration of each emission source to $CH_4$ by verifying the simulated concentration of $CH_4$ in the Korean peninsula, and then to compare the $CH_4$ emission used to the $CH_4$ simulation with that of a box model. We simulated the Weather Research Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model to estimate the mean concentration of $CH_4$ during the period of April 1 to 22 August 2010 in the Korean peninsula. The $CH_4$ emissions within the model were adopted by the anthropogenic emission inventory of both the EDGAR of the global emissions and the GHG-CAPSS of the green house gases in Korea, and by the global biogenic emission inventory of the MEGAN. These $CH_4$ emission data were validated by comparing the $CH_4$ modeling data with the concentration data measured at two different location, Ulnungdo and Anmyeondo in Korea. The contributed concentration of $CH_4$ estimated from the domestic emission sources in verification of the $CH_4$ modeling at Ulnungdo was represented in about 20%, which originated from $CH_4$ sources such as stock farm products (8%), energy contribution and industrial processes (6%), wastes (5%), and biogenesis and landuse (1%) in the Korean peninsula. In addition, one that transported from China was about 9%, and the background concentration of $CH_4$ was shown in about 70%. Furthermore, the $CH_4$ emission estimated from a box model was similar to that of the WRF-CMAQ model.

Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques (데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구)

  • Yonguk Choi;Sangjin Seo;Hangilro Jang;Daeung Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.211-228
    • /
    • 2023
  • Ground-penetrating radar (GPR) surveys are commonly used to monitor embankments, which is a nondestructive geophysical method. The results of GPR surveys can be complex, depending on the situation, and data processing and interpretation are subject to expert experiences, potentially resulting in false detection. Additionally, this process is time-intensive. Consequently, various studies have been undertaken to detect cavities in GPR survey data using deep learning methods. Deep-learning-based approaches require abundant data for training, but GPR field survey data are often scarce due to cost and other factors constaining field studies. Therefore, in this study, a deep- learning-based model was developed for embankment GPR survey cavity detection using data augmentation strategies. A dataset was constructed by collecting survey data over several years from the same embankment. A you look only once (YOLO) model, commonly used in computer vision for object detection, was employed for this purpose. By comparing and analyzing various strategies, the optimal data augmentation approach was determined. After initial model development, a stepwise process was employed, including box clustering, transfer learning, self-ensemble, and model ensemble techniques, to enhance the final model performance. The model performance was evaluated, with the results demonstrating its effectiveness in detecting cavities in embankment GPR survey data.

A Test Data Generation Tool based on Inter-Relation of Fields in the Menu Structure (메뉴 구조의 필드간의 상호 연관관계를 기반으로 한 테스트 데이타 자동 생성 도구)

  • 이윤정;최병주
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.123-132
    • /
    • 2003
  • The quality certification test is usually conducted by a certifying organization to determine and guarantee the quality of software after the software development phase, commonly without the actual source code, but with by going against the product's manual. In this paper, we implement a Manual-based Automatic Test data generating tool: MaT, the test technique based on manual, that automatizes producing the test data from analysis data of software package and manual. The input data of MaT are the result of the analysis of software and manual. We propose 'menu-based test analysis model' in order to generate the input data. We believe that the proposed technique and tool he]p improving quality and reliability of the software.

Analysis Method of influence of input for Image recognition result of machine learning (기계습의 영상인식결과에 대한 입력영상의 영향도 분석 기법)

  • Kim, Do-Wan;Kim, Woo-seong;Lee, Eun-hun;Kim, Hyeoncheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.209-211
    • /
    • 2017
  • 기계학습은 인공지능(AI, Artificial Intelligence)의 일종으로 다른 인공지능 알고리즘이 정해진 규칙을 기반으로 주어진 임무(Task)를 해결하는 것과는 달리, 기계학습은 수집된 Data를 기반으로 최적의 솔루션을 학습한 후 미래의 값들을 예측하거나 해석하는 방법을 사용하고 있다. 더욱이 인터넷을 통한 연결성의 확대와 컴퓨터의 연산능력 발전으로 가능하게 된 Big-Data를 기반으로 하고 있어 이전의 인공지능 알고리즘에 비해 월등한 성능을 보여주고 있다. 그러나 기계학습 알고리즘이 Data를 학습할 때 학습 결과를 사람이 해석하기에 너무 복잡하여 사람이 그 내부 구조를 이해하는 것은 사실상 불가능하고, 이에 따라 학습된 기계학습 모델의 단점 또는 한계 등을 알지 못하는 문제가 있다. 본 연구에서는 이러한 블랙박스화된 기계학습 알고리즘의 특성을 이해하기 위해, 기계학습 알고리즘이 특정 입력에 대한 결과를 예측할 때 어떤 입력들로 부터 영향을 많이 받는지 그리고 어떤 입력으로부터 영향을 적게 받는지를 알아보는 방법을 소개하고 기존 연구의 단점을 개선하기 위한 방법을 제시한다.

  • PDF