최근, nanorod나 nanowire와 같은 1차원의 나노구조가 나노디바이스로 각광을 받고 있다. [1] 특히 InN는 3족 질화물 반도체 중 가장 작은 밴드갭 에너지와 뛰어난 수송 특성을 가지고 있어 나노디바이스로의 응용에 적합한 물질이다. [2] 그러나 InN는 큰 평형증기압을 가지므로 쉽게 인듐과 질소로 분해되는 특성이 있어 나노구조로의 성장이 쉽지 않음이 알려져 있다. [3] 최근 연구결과에 따르면, InN 나노구조는 금속 catalyst를 사용한 방법이나, 기판 위 패턴을 이용하여 성장하는 방법, 염소를 사용한 방법이 널리 쓰이고 있다. [4,5,6] 그러나 이 방법들은 의도치 않은 불순물의 원인이 되거나 다른 추가적인 과정을 필요로 한다는 문제점도 일부 가지고 있다. 본 연구에서는 catalyst-free 유기 금속 화학 증착법 (MOCVD)를 이용하여 $Al_2O_3$ (0001)면 위에 InN nanostructure를 성장하였다. InN nanostructure 성장 시 트리메틸인듐(TMIn)과 암모니아($NH_3$) 를 전구체로 사용하였으며, 캐리어 가스로는 질소를 사용하였다. 또한 모든 샘플의 성장시간은 60분으로 고정하였으나, 성장 시 온도의 의존성을 보기 위해 $680-710^{\circ}C$ 의 온도범위에서 성장을 진행하였다. 그 결과 InN는 본 실험에서 적용된 성장온도범위 내에서 온도가 증가함에 따라 초기에는 columnar구조로 성장된 박막의 형태에서 wall이 배열된 형태로 변화하며 결국 $710^{\circ}C$ 의 온도에서 nanorod로 성장하게 된다. 성장된 InN의 나노구조는 X-선 회절 측정법, 주사 전자 현미경 그리고 투과 전자 현미경을 이용하여 각각의 구조적 특성을 분석하였다. X-선 회절 측정법과 주사 전자 현미경을 통한 분석결과에서는 이들 nanorods가 대부분 c 방향으로 수직하게 정렬되어 있음을 확인 할 수 있었다. 또한, $690^{\circ}C$ 에서 60분간 성장된 InN의 wall 구조의 두께는 200 nm, 길이는 $2-2.5\;{\mu}m$로 관찰되었으며, $710^{\circ}C$에서 60분간 성장된 InN nanorod의 지름은 150 nm, 길이는 $3\;{\mu}m$ 정도로 관찰되었다. 이를 통하여 볼 때 성장 온도가 InN의 나노구조 형성 시 표면의 모폴로지변화에 중요한 변수로 작용함을 알 수 있다. 본 발표에서는 이러한 표면 형상 및 구조 변화가 성장온도에 따른 관계성을 가짐을 InN의 분해와 성장의 경쟁적인 관계에 의해 논의할 것이다.
이무수물인 4,4'-(hexafluoroisopropylidene)-diphthalic anhydride(6FDA)에 bis(3-aminophenyl) sulfone(APS), bis[4-(3-aminophenoxy)-phenyl] sulfone(BAPS), 2,2-bis(4-aminophenyl)-hexafluoropropane(6FPD), 2,2-bis[4-(4-aminophenoxy)-phenyl]hexafluoropropane(6FBAPP), 2,2'-bis(trifluoromethyl)benzidine(TFDB) 및 1,4-phenylenediamine(PDA) 등 6종류의 디아민 단량체를 이용하여 폴리이미드(PI) 박막을 제조하였다. 이들 박막의 잔류응력 거동은 thin film stress analyzer(TFSA)를 이용하여 전구체의 열적 이미드화에 따라 in-situ로 측정하였으며, 모폴로지 변화를 통해 해석하였다. 박막의 분자 배향성 및 질서도에 따라 잔류응력은 23.1에서 12.5MPa의 값을 보였으며, 사슬이 강직할수록 감소하였다. 열 특성은 시차 주사 열량계(DSC), 열 중량 분석기(TGA) 및 열 기계 분석기(TMA)를 이용하여 측정하였고, 광학 특성은 자외선/가시광선 분광광도계(UV-vis)와 색차계를 이용하였다. 제조된 박막의 특성변화는 그 화학구조와 밀접한 관련이 있으며, 잔류응력과 광학 특성은 트레이드-오프(trade-off)됨을 확인할 수 있었다.
본 연구에서는 IZO를 활성층으로 하고 $HfSiO_x$를 절연층으로 한 TFT에 대하여 그 성능을 측정하였다. $HfSiO_x$는 $HfO_2$ target과 Si target을 co-sputtering 하여 증착하였으며 RF power를 달리 하여 네 가지의 $HfSiO_x$ 박막을 제작하였다. 공정의 간소화를 위해 게이트 전극을 제외한 모든 층들은 RF-magnetron sputtering system과 shadow mask만을 이용하여 증착하였으며 공정의 간소화를 위해 어떠한 열처리도 하지 않았다. 네 가지 $HfSiO_x$ 박막의 구조적 변화를 X-ray diffraction(XRD), atomic force microscopy(AFM)을 통해 분석하였고, 그 전기적 특성을 확인하였다. 박막 내 $HfO_2$와 Si의 조성비에 따라 그 특성이 현저히 차이가 남을 확인하였다. $HfO_2$(100W)-Si(100W)의 조건으로 증착한 $HfSiO_x$ 박막을 절연층으로 한 소자의 특성이 전류 점멸비 5.89E+05, 이동도 2.0[$cm^2/V{\cdot}s$], 문턱전압 -0.5[V], RMS 0.263[nm]로 가장 좋은 결과로 나타났다. 따라서 $HfSiO_x$ 박막 내의 적절한 $HfO_2$와 Si의 조성비가 계면의 질을 향상시킴은 물론, $HfO_2$자체의 trap이나 defect를 효과적으로 줄여 줌으로써 소자의 성능 향상에 중요한 요소라 판단된다.
본 연구에서는 Arachidic acid Langmuir-Blodgett (LB)막의 계면특성과 전기적 특성을 측정하였다. Arachidic aicd는 포화지방산으로 ($CH_3(CH_2)_{18}COOH$)의 구조를 가지며, 크기가 27.5[$\AA$]으로 $CH_3(CH_2)_{18}$의 소수기와 COOH의 친수기로 구성되어 있다. LB막은 박막제작시 배열과 배향의 제어가 용이하다. Chloroform을 용매로 하여 2[mmol/l]의 농도를 조성하여 ${\pi}-A$ 등온선을 통해 기체 상태, 액체 상태, 고체 상태를 관찰하였으며 편광각 현미경 (Brewster angle microscopy) 이미지를 통해 각 상태에서의 이미지를 관찰하였다. 또한 LB막의 제작시 사용되어진 ITO 기판은 친수처리 전 후의 접촉각의 측정을 통하여 막의 안정성을 확인하였다. 또한 LB막을 Metal/LB막/Metal 구조의 소자로 제작하여 전압-전류 특성을 측정하였다.
나노구조를 갖는 물질들은 나노구조물이 갖는 고유의 체적 대비 높은 표면적 비와 양자 갇힘 효과에 기인하는 독특한 전기적, 광학적, 광전기적, 자기적 특성으로 인하여 많은 주목을 받아왔다. 열화학 기상 증착 공정은 나노 구조물의 성장과정에서 다양한 구조를 갖는 나노소재의 합성 능력 때문에 더욱 주목을 받아왔다. 본 연구에서는 두 영역 열화학 기상 증착법과 소스 물질 $TiO_2$ 파우더를 이용하여 VLS 공정으로 Si\$SiO_2$(300 nm)\Pt(5~40 nm) 기판 위에 실리콘 옥사이드 나노와이어를 성장시켰다. 성장된 실리콘 옥사이드 나노와이어의 형상과 결정학적 특성을 전계방출 주사전자현미경과 투과전자현미경으로 분석하였다. 분석결과, 성장된 실리콘 옥사이드 나노와이어의 형상인 지름과 길이는 촉매 박막의 두께에 의존하여 다른 모양을 나타내었다. 또한 성장된 실리콘 옥사이드 나노와이어는 비정질 상을 갖는 것으로 분석되었다.
본 논문은 저온(<$150^{\circ}C$)에서 원자층 증착법(ALD)으로 증착된 $TiO_2$ 박막의 물리적, 화학적 막질에 대한 연구 결과를 보여준다. $TiO_2$의 ALD는 TTIP(Titanium(IV)isopropoxide)와 물을 이용하여 진행되었다. $150^{\circ}C$ 미만에서 증착시, ALD $TiO_2$의 성장률은 약 $0.3{\AA}/cycle$로 증착 온도 및 위치에 상관없이 거의 일정한 성장률을 보였다. 또한 SEM분석에서는 $200^{\circ}C$ 이상에서의 증착과 대조적으로, $150^{\circ}C$ 미만에서 증착된 박막은 부드러운 표면을 보였다. 투과전자현미경(TEM) 분석을 통해 이러한 특징이 저온에서 균질한 비정질의 막이 증착되었기 때문이라는 점을 알 수 있었다. 또한 저온 증착임에도 불구하고 종횡비가 1:75인 고종횡비 구조에도 80% 이상의 형상 적응성을 보였다. 그러나 저온 증착의 영향으로 X-선 광전자 분광기(XPS) 분석을 통해 4~7 at% 정도 함량의 탄소 불순물이 검출됨을 확인하였다.
정삼투법을 이용한 해수담수화는 역삼투 공정에 비해 에너지 절감이 가능하여 해수담수화 차세대 기술로 주목받고 있다. 막을 기반으로 하는 수처리 분야에서 분리 성능을 향상시키고 새로운 기능을 부여하기 위해, 고분자 매트릭스에 필러인 나노물질을 삽입하는 박막 나노복합체 분리막(thin film nanocomposite, TFN) 개발에 대한 연구가 요구되고 있다. 본 연구에서는 딥 코팅(dip coating) 방법을 기반으로 한 다층박막적층법(Layer-by-layer, LBL)을 이용하여 산화그래핀(graphene oxide, GO)의 나노 적층구조를 제어하여, 정삼투 공정에서의 높은 안정성 및 높은 수투과도 및 염 제거, 낮은 염 역확산을 갖는 그래핀 나노복합체 분리막을 개발하고자 하였다. 정삼투 공정의 성능 향상을 위한 산화그래핀의 환원 반응시간과 LBL 딥코팅 적층 수의 최적화를 통해, 수투과도 2.51 LMH/bar, 물분자 선택성 8.3 L/g, 염 제거율 99.5%를 갖는 나노복합체 분리막을 개발하였다. 이는 상용화된 CTA FO 분리막보다 수투과도는 10배, 물분자 선택성은 4배 높게 향상되었으며, 염 제거율은 비슷한 수준으로 나타났다.
휘발성 유기화합물로서 3가 염소탄화수소인 트리클로로메탄, 트리클로로에탄, 트리클로로에틸렌을 MFI 구조인 소수성 제올라이트 ZSM-5 분리막으로 투과증발을 이용하여 물과의 이성분계 혼합물로부터 선택적으로 분리하고자 하였다. 직경 9.5 mm 다공성 스테인리스 스틸 튜브의 내부 표면에 수열합성법으로 ZSM-5 제올라이트 결정을 성장시켜 박막을 만들어 분리막으로 이용하였으며, 합성된 ZSM-5 제올라이트 분리막으로 공급되는 3가 염소화합물의 농도 및 실험 온도에 따른 분리 특성을 고찰하였다. 3가 염소화합물의 수용액상 농도를 0.0001 몰분율부터 0.001 몰분율로 변화하면서, 또한 실험 온도를 25에서 $45^{\circ}C$로 바꾸면서 투과증발 실험을 수행한 결과 트리클로로메탄/물 이성분계에 대하여 약 $16{\sim}66$의 선택도를 얻었으며, 트리클로로에탄/물 이성분계에 대하여 $3.3{\sim}4.6$의 선택도와 트리클로로에틸렌/물 이성분계에 대하여 $1.4{\sim}8$의 선택도를 관찰할 수 있었다.
Ni계 경면합금인 Deloro 50의 마모거동을 15ksi와 30ksi 접촉응력하의 여러 마모조건에서 조사하였다. 상온대기중에서 Deloro 50는 15ksi 응력에서도 극심한 응착마모가 발생하는 매우 낮은 마모저항성을 보였는데 이는 fcc 결정구조를 갖는 Deloro 50 기지상의 경도와 가공경화율이 strain-induced 상변태를 이웅한 hcp 결정구조의 Stellite 6보다 낮기 때문으로 생각된다. 상온 수중에서 Deloro 50는 15ksi 응력에서 Stellite 6와 비슷한 마모저항성을 보였는데 이는 물이 미세요철간의 금속간 접촉을 억제하였기 때문으로 생각된다. 그러나, 30ksi의 높은 접촉응력에서는 상온 대기중길 같은 응착마모가 발생하는 것으로 보아, 30ksi의 높은 응력에서는 물의 응착마모 억제 효과가 없었기 때문으로 생각된다. $300^{\circ}C$ 대기중에서 Deloro 50는 30ksi의 높은 접촉응력에서도 Stellite 6보다 우수한 마모저항성을 보였는데 이는 고온에서 마모시 생성되는 복합산화물층이 효과적으로 금속간 접촉을 방해하여 응착마모를 억제하였기 때문으로 생각된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.