• Title/Summary/Keyword: 바퀴 제어

Search Result 172, Processing Time 0.028 seconds

Balancing control of one-wheeled mobile robot using control moment gyroscope (제어 모멘트 자이로스코프를 이용한 외바퀴 이동로봇의 균형 자세 제어)

  • Park, Sang-Hyung;Yi, Soo-Yeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • The control moment gyroscope(CMG) can be used for essential balancing control of a one-wheeled mobile robot. A single-gimbal CMG has a simple structure and can supply strong restoring torque against external disturbances. However, the CMG generates unwanted directional torque also besides the restoring torque; the unwanted directional torque causes instability in the one-wheeled robot control system that has high rotational degrees of freedom. This study proposes a control system for a one-wheeled mobile robot by using a CMG scissored pair to eliminate the unwanted directional torque. The well-known LQR control algorithm is designed for robustness against modeling error in the dynamic motion equations of a one-wheeled robot. Computer simulations for 3D nonlinear dynamic equations are carried out to verify the proposed control system with the CMG scissored pair and the LQR control algorithms.

A Development of 1C1M Propulsion Control System for High Speed Train (고속전철용 1C1M 추진제어장치 개발)

  • Jeong, Man-Kyu;Cho, Sung-Joon;Park, Geon-Tae;Lee, Kwang-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.229-230
    • /
    • 2014
  • 본 논문은 고속전철용 1C1M 추진제어장치의 개발에 관한 것이다. KTX-산천 추진제어장치와 호환되도록 컨버터 부분은 DC링크를 공유하여 컨버터 2대를 병렬 운전하도록 하였다. 인버터 2대를 배치하여 견인전동기를 개별적으로 제어할 수 있도록 하였다. 동일 대차에서 1축, 2축 바퀴의 직경차는 1C2M 추진제어장치에서는 4mm 이하로 관리되고 있다. 1C1M 추진제어장치를 개발하여 바퀴의 직경차가 40mm 이하로 관리되도록 바퀴 직경관리 기준을 향상 시켜 바퀴의 사용 시간을 연장할 수 있도록 하였다. 컨버터, 인버터가 중고장에 의하여 차단 시 고장난 컨버터, 인버터 군을 차단하고 나머지 컨버터, 인버터 군은 재기동하는 충전회로 및 시퀀스를 추가하여 50% 동력을 사용하도록 하였다. 개발된 추진제어장치는 전력회로 시험, 기능 동작 시험을 통하여 제어가 원활히 수행됨을 확인하였다.

  • PDF

Balancing Control of a Single-wheel Mobile Robot by Compensation of a Fuzzified Balancing Angle (각도 오프셋의 퍼지보상을 통한 외바퀴 이동 로봇의 균형제어)

  • Ha, Minsu;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • In this paper, a fuzzy control method is used for balancing a single-wheel robot. A single-wheel robot controlled by the PD control method becomes easily unstable since the flywheel tends to lean against one direction. In the previous research, we have used the gain scheduling method. To remedy this problem, in this paper, a fuzzy compensation technique is proposed to compensate for the balancing angle. The fuzzy control method compensates offset values at the balancing angle to prevent the gimbal from falling against one direction. Experimental studies of the balancing control performance of a single-wheel mobile robot validate the proposed control method.

Fuzzy Variable Structure Control of Wheel-Driven Inverted Pendulum (바퀴구동 도립진자에 대한 퍼지 가변구조제어)

  • Yoo Byung-Kook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.4
    • /
    • pp.301-307
    • /
    • 2004
  • This paper suggests a fuzzy variable structure control scheme for Takagi-Sugeno(T-S) fuzzy model and presents the attitude control of the wheel-driven inverted pendulum(WDIP) based on the proposed control algorithm. The proposed controller is designed based on the T-S fuzzy modeling of nonlinear system and the unification of gain matrices in linear subsystems that constitute the overall fuzzy model. The uncertainties generated in the gain matrix unifying procedure can be interpreted as the input disturbances of the conventional variable structure control. These unifying disturbances can be resolved by using the robustness property of the conventional variable structure system. Design example for wheel-driven inverted pendulum demonstrates the utility and validity of the proposed control scheme.

  • PDF

Balancing Control of a Single-wheel Mobile Robot from a Stick-Model Point of View (스틱 모델 관점에서의 외바퀴 로봇 밸런싱 제어)

  • Lee, Sang-Deok;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1327-1328
    • /
    • 2015
  • 본 논문에서는 스틱 모델을 사용하여 외바퀴 로봇의 수직 방향에서 생기는 파라메트릭 진동을 시뮬레이션 분석하고, 분석된 결과를 바탕으로 제어 법칙을 유도한 다음, 실험을 통해 성능을 검증한다. 실험에 활용된 외바퀴 로봇은 수평 방향에 대해서는 비례미분제어기를 사용하고, 수직 방향에 대해서는 진동제어기를 활용한다.

  • PDF

A Neural Network Model of Electric Differential System for Electric Vehicle (전지자동차용 전자식 차동 시스템의 신경망 모델)

  • 이주상;유영재;임영철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.6
    • /
    • pp.597-604
    • /
    • 2000
  • 본 연구에서는 전기자동차에 사용되는 전자식 차동 시스템의 신경망 모델을 제안한다. 차량이 곡선도로를 따라 주행할 경우 내측 바퀴와 외측 바퀴의 회전속도가 서로 달라야 진동이나 뒤틀림 없이 완만한 선회 주행을 할 수 있다. 전기자동차는 그 구조적 특성상 각각의 바퀴가 독립된 구동원을 갖는다. 이 때문에 일반 엔진 차량의 기어식 차동장치를 대신할 전자식 차동장치가 요구된다. 이러한 차동장치는 차량의 구조뿐만 아니라 차량의 주요 파라미터인 조향각 및 속도에 따라서 비선형적인 관계를 가지고 있어서 해석하기가 쉽지 않다. 따라서 이와 같은 비선형적인 관계 모델을 학습 능력을 가진 신경망에 의하여 모델링 함으로써 제어에 적용할 수 있다. 이를 실현하기 위해 제작한 전기자동차로 곡선도로를 주행하여 다양한 곡률과 주행속도에 따른 내측 외측 바퀴의 회전속도 데이터를 획득하고, 데이터의 비선형 특성을 고려한 차동 속도 제어기의 구조를 설계한다. 이 제어기에 적합한 모델은 신경망을 이용하여 실측 데이터를 학습시킴으로써 차동기능을 수행할 수 있는 제어기를 구현한다.

  • PDF

All-Directional Smart Vehicle (전방향 이동이 가능한 스마트 자동차)

  • Park, Cha-Hun;Woo, Kyung-Mo;Moon, Min-Sik;Kim, Pyeong-Won;Jung, Hyeon-seop;Kim, Ka-Bin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.239-240
    • /
    • 2019
  • 자동화 시스템이 발전하면서, 자동차 또한 자동화가 되고 점점 더 편리하게 발전해 왔다. 하지만, 아직까진 자동차 현황은 운전자의 운전능력에 의존하는 경향이 강하다. 본 논문에서는 이러한 사람의 운전능력에 의존해야 하는 자동차의 불편한 점을 해소하고자 개발했다. 기존의 자동차는 앞바퀴의 축이 선회하며 방향을 정한다. 그러나, 이러한 방식은 현재 운용되고 있는 기존 자동차의 기본적인 차체의 구조적인 문제로 인하여 자동차의 이동과 동선에 제약을 준다. 이 방식의 제약을 풀어버리기 위해서는 여러 방법이 있겠지만, 본 논문에서는 바퀴의 구동축이 움직이는 방식을 바꾸는 방법으로 자동차의 이동제약을 개선하고자 했다. 앞바퀴만의 방향 제어가 아닌 4개의 바퀴를 각각 제어할 수 있게 함으로써, 장애물을 피하기 위한 자동차 제어의 편의성을 더하고자 했다.

  • PDF

A Study on Autonomous Driving Robots to Overcome Obstructions in Hybrid Wheel (하이브리드 바퀴 기반 장애물 극복용 자율 주행 로봇에 관한 연구)

  • Jeong, Hye-Won;Park, Sung-Hyun;Yoo, Hye-Bin;Park, Myung-Suk;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.621-624
    • /
    • 2020
  • 본 논문은 주행 로봇의 H/W에 관한 연구로서, 로봇 자체 지능을 통하여 주변 환경에 따라 변형되는 하이브리드 휠에 대한 바퀴 변형 방식을 제안한다. 더불어 바퀴 변형에 요구되는 다리의 개수, 극복 가능한 장애물의 높이, 계단주행 메커니즘을 구조적으로 분석하고, 개선된 성능을 입증하는 객관적인 실험데이터를 제시한다. 또한, 로봇 몸체 프레임을 설계하여 하이브리드 휠과 함께 장애물을 극복하는 응용 분야에 적용하여 제시한다.

Experimental Studies of a Time-delayed Controller for Balancing Control of a Two-wheel Mobile Robot (이륜 이동로봇의 균형 제어를 위한 시간지연 제어기의 실험 연구)

  • Cho, Sung Taek;Jung, Seul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • This paper presents balancing control of a two-wheel mobile robot (TWMR). TWMR is aimed to maintain balance while moving. Although TWMR can be controlled by linear controllers such as PD controller, time-delayed controller is employed for robustness. Performances of PD controllers and time-delayed controllers are compared. Especially, experimental studies on different acceleration estimation for the time-delayed controller are conducted. Performances by different acceleration estimations of the balancing angle, of the position, and of both angle and position are compared empirically.

An Antilock Brake Controller Design Using Hardware In-the Loop Simulation (Hardware In-the Loop Simulation을 이용한 미끄럼방지 제동제어기의 설계)

  • Lee, Ki-Chang;Jeon, Jung-Woo;Hwang, Don-Ha;Lee, Se-Han;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2320-2322
    • /
    • 2004
  • 전자제어식 미끄럼방지 제동장치 (ABS, Antilock Brake System)는 차량의 급제동시 발생할 수 있는 바퀴의 슬립을 방지하여 차량의 제동거리를 단축시키고 주행 성능을 향상시키는 차량 내 안전장치이다. 지난 몇 년 동안 공압식 제동시스템을 사용하는 대형차량에 적합한 미끄럼방지 제동 제어기를 연구해 왔다. 이 제어기는 바퀴의 슬립율과 그 변화량을 이용한 제어 법칙을 유도하여, 제어 파라미터로 사용하고 있다. 이러한 제어 파라미터의 튜닝에는 맡은 반복적인 실험이 요구된다. 이러한 요구에 부응하기 위하여 차량의 제동을 실시간으로 모사 할 수 있는 HILS (Hardware In-the Loop Simulation) 시스템을 개발, 구축하였다. 개발 HILS는 공압식 브레이크 시스템 및 14 자유도를 가지는 차량 동역학 모델 및 타이어-바퀴 동역학을 소프트웨어 모델로 사용하고, 개발 중인 전자제어식 미끄럼 방지 제동 제어기를 하드웨어로 사용하여, 바퀴속도 센서 신호 모의 장치 및 공압 엑추에이터 모의 신호등의 인터페이스 장치를 사용하여 제동중인 차량의 상태를 실시간으로 시뮬레이션 및 감시할 수 있다. 이 개발 HILS를 이용하여 제동 제어기의 제어 파라미터의 튜닝을 짧은 시간에 성공적으로 끝낼 수 있었을 뿐만 아니라, HILS 실험을 마친 제어기는 미끄럼 방지 제동 시험장에서 실차 주행 시험을 무사히 마침으로써, 개발 기간과 비용을 절감할 수 있는 하드웨어를 이용하는 시뮬레이션의 효용성을 간접적으로 증명하였다.

  • PDF