• Title/Summary/Keyword: 바이오 에탄올

Search Result 414, Processing Time 0.029 seconds

Evaluation of Oxalic Acid Pretreatment Condition Using Response Surface Method for Producing Bio-ethanol from Yellow Poplar (Liriodendron tulipifera) by Simultaneous Saccharification and Fermentation (바이오에탄올 생산을 위한 백합나무(Liriodendron tulipifera)칩의 동시당화발효 및 Response Surface Method를 이용한 옥살산 전처리 조건 탐색)

  • Kim, Hye-Yun;Lee, Jae-Won;Jeffries, Thomas W.;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.75-85
    • /
    • 2011
  • The main purpose of this study is to evaluate the potential of producing bioethanol from yellow poplar ($Liriodendron$ $tulipifera$) wood chips by oxalic acid pretreatment and to examine the pretreatment conditions by response surface methodology (RSM). Based on $2^3$ factorial design, adjusted variables were reaction temperature ($^{\circ}C$), residence time (min), and acid loading (g/g), and a series of distinct 15 experimental conditions was organized with duplication at central point (total 16 performances). After pretreatment, simultaneous saccharification and fermentation (SSF) was subjected on solid fraction with yeast strain $Pichia$ $stipitis$. Maximum ethanol yields of the most samples were measured at 72 hours and applied to RSM as a dependent variable. 9.7 g/${\ell}$ of ethanol was produced from the solid pretreated at $180^{\circ}C$ for 40 min with 0.013 g/g of oxalic acid loading. According to the response surface methodology, it was determined that the temperature is the most governing factor via statistic analysis.

A Study on the Whitening Effect of Mangifera indica L. Peel Extracts through Inhibition of Melanin Synthesis Factor (Melanin 생성 인자 억제 효과를 통한 Mangifera indica L. Peel의 미백효과 연구)

  • Kim, Hyo-Min;Yoo, Dan-Hee;Lee, In-Chul
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.31-39
    • /
    • 2022
  • The purpose of this study was to investigate the whitening effects of hot water (AMPW) and ethanol (AMPE) extracts of Mangifera indica L. peel. To verify the whitening effects, tyrosinase inhibitory activity was measured. 9.51% inhibitory activity, and 35.98% inhibitory activity at 1,000 ㎍/ml. The effects of AMPW and AMPE on cell viability were measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay in B16-F10 melanoma cells. Greater than 95% cell viability was observed at 100 ㎍/ml. Thus, subsequent experiments were performed at concentrations less than 100 ㎍/ml. The whitening effects were confirmed by measuring the protein and mRNA expression levels of microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related protein 1 (TRP-1), and TRP-2, which are factors involved in melanin synthesis. Western blotting and reverse transcription-polymerase chain reaction results confirmed that 100 ㎍/ml AMPW and AMPE showed superior inhibitory effects than the control treatment (alpha-melanocyte stimulating hormone only). Therefore, Mangifera indica L. peel extract had a whitening effect, and thus, has potential as a natural material for use in cosmetics.

Antioxidant and Anti-inflammatory Activities of Artemisia annua L. According to Extract Methods (개똥쑥 용매추출 방법에 따른 항산화 활성 및 항염증 효과 )

  • Hee-Kyung Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.875-883
    • /
    • 2022
  • This study was to investigate the antioxidant and anti-inflammatory activity of leaf and stem of Artemisia annua L. extract by hot water and 70% ethanol. The total polyphenol content was significantly higher in the 70% ethanol extract of Artemisia annua L. than in the hot water extract, but there was no significant difference in the total flavonoid content between the hot water extract and the 70% ethanol extract. The DPPH radical and ABTS radical scavenging ability was the highest in the vitamin C treatment group at the concentration of 62.5~500 ㎍/mL, followed by the 70% ethanol extract and the hot water extract. As a result of measuring the NO production inhibitory effect at 125 ~ 500 ㎍/mL, the hot water extract showed strong NO production inhibition at the concentration of 500 ㎍/mL, and showed the inhibition of NO production with concentration-dependent pattern. In addition to inhibitory activity of NP production, the 70% ethanol extract also showed an inhibitory effect on inflammatory cytokines production. It is thought that it can be widely used in the treatment and improvement of inflammatory diseases because it shows antioxidant effects and significantly reduces the expression of inflammatory cytokines.

Isolation and HPLC-DAD validation of xanthoangelol in Lespedeza bicolor extract (싸리나무 추출물의 Xanthoangelol 분리 및 HPLC-DAD 밸리데이션)

  • Woo, Hyun Sim;Kim, Yeong-Su;Oh, Yu Jin;Cho, Hae Jin;Song, Se-Kyu;Kim, Dae Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.26-30
    • /
    • 2020
  • This study was undertaken to determine the characteristics of xanthoangelol, the major chalcone constituent derived from the extracts of different parts of Lespedeza bicolor. Xanthoangelol was isolated from the root extract using column chromatography and used as a standard for quantitative analysis. The structure of the isolated compound was established based on spectroscopic evidence. The HPLC-DAD method was validated for specificity, linearity, precision, accuracy, limit of detection, and limit of quantitation. The calibration curve of xanthoangelol had significant linearity (R2>0.9999). Limit of detection and limit of quantitation 0.018 and 0.059 ㎍/mL, respectively. The relative standard deviation values of precision test, and intra- and inter-day tests were less than 0.22 and 0.40%, respectively. In the recovery test, the accuracy ranged from 98.98-102.78% with RSD values less than 0.13%. The method validation parameters indicate the applicability of the HPLC method for quality control of food or drug formulations containing L. bicolor.

Application of β-1,3-Glucanase from Pyrococcus furiosus for Ethanol Production using Laminarin (Pyrococcus furiosus의 β-1,3-glucanase를 처리한 laminarin 분해 산물을 이용한 바이오 에탄올의 생산)

  • Kim, Dong-Gyun;Kim, Eun-Young;Kim, Yu-Ri;Kim, Joong-Kyun;Lee, Han-Seung;Kong, In-Soo
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • $\beta$-1,3-glucanase from Pyrococcus furiosus was applied for the saccharification of laminarin, which is a major oligo-saccharide component of brown algae, and the reaction mixture produced from laminarin was utilized as a substrate for alcohol fermentation using yeast. To prepare the recombinant $\beta$-1,3-glucanase, a $\beta$-1,3-glucanase gene was overexpressed in Escherichia coli and purified. Laminarin was degraded to an oligo- and mono-saccharide, such as glucose, after reaction with the purified recombinant $\beta$-1,3-glucanase, and the products after enzymatic treatment were confirmed by TLC and HPLC analysis. Decomposed laminarin after enzyme reaction was only added to the medium as a C-source for yeast alcohol production reaction. 0.3% alcohol production was detected from the cultured broth by gas chromatography after 48 hr of incubation. Further evaluation for optimal conditions of saccharification and alcohol fermentation can be suggested, as well as the possibility of using this enzymatic method to produce ethanol using laminarin.

Comparative Evaluation of Biological Activities and Active Compounds of Some Invasive Alien Plants (주요 생태계 교란 외래식물의 생리활성 비교 평가 및 유효성분)

  • So Jin Kim;Min Gun Kim;Kyung-Hwan Boo;Chang Sook Kim
    • Korean Journal of Plant Resources
    • /
    • v.36 no.4
    • /
    • pp.264-274
    • /
    • 2023
  • To evaluate functional biomaterials of 5 invasive alien plants, total polyphenol and flavonoid contents, antioxidant activity, anti-inflammatory activity, and antibacterial effect were measured. The total polyphenol and flavonoid contents of the extracts were in the order of Rumex acetosella L. > Hypochaeris radicata L. ≥ Lactuca scariola L. > Humulus japonicus Siebold & Zucc. ≥ Solanum viarum Dunal. The DPPH and ABTS radical scavenging activities of the extract were the highest in R. acetosella and correlated well with the total polyphenol contents. In RAW 264.7 cells stimulated with lipopolysaccharide (LPS), nitric oxide (NO) and prostaglandin E2 (PGE2) production inhibitory effect of the extracts (100 ㎍ SE/mL) were 20~60% and 10~70%, respectively, showing the highest inhibitory effect in R. acetocella. The extracts of R. acetosella, H. japonicus and S. viarum showed antibacterial activity against food poisoning-causing microorganisms such as Bacillus subtilis, Escherichia coli, Vibrio parahaemolyticus and Vibrio vulnificus. Furthermore, the H. japonicus extract was found to have effective antibacterial activity against oral microorganisms such as Enterococcus faecalis, Lacticaseibacillus casei, Rothia dentocariosa, Staphylococcus epidermidis and Streptococcus mutans, and its major active ingredients were predicted to be pentadecylic acid, palmitic acid and clionasterol. These results suggest that alien plants have potential as biomaterials with antioxidant, anti-inflammation and antibacterial effects.

Effect of Additives on Paper Aging (종이 첨가제가 종이의 노화에 미치는 영향)

  • 윤병호;이명구;최경화
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.2
    • /
    • pp.25-33
    • /
    • 2002
  • One of the critical problems to preserve books and documents in libraries and archives is the deterioration. Some of previous results showed that the major cause of paper deterioration was the acid-catalyzed hydrolysis of the cellulose in paper fibres and aging rate of acidic paper was faster than that of alkaline paper. Therefore, It is necessary to remove the acid in the paper for reducing the rate of paper deterioration. It has been reported to extend the useful life of acidic paper by three to five times. Recently, It has been recognized the need for an effective method of deacidifying large quantities of books and document. However, in the previous many reports little attention was paid to the effect of paper additives. In this paper, We carried out experiment about the effect of additives on paper aging and the effect of deacidification by the gaseous ethanolamines (monoehtanolamine, diethanolamine, triehtanolamine). In result, it was found that the strength of aging was in the order of the alum+rosin>alum >AKD> control and the rate of deacidification was in the order of the monoethanolamine>diethanolamine>triethanolamine. The treatment with the gaseous ethanolamines caused decreasing of brightness and dropping of fold endurances. However, deacidification by combination treatment of the various gaseous ehtnaolamines prevented from decreasing of brightness and dropping of folding endurances.

  • PDF

Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model (강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델)

  • Lee, Eun Ju;Song, Hae Jin;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.155-161
    • /
    • 2012
  • A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (${\phi}$). The obtained value of Thiele modulus (${\phi}$) was close to 0.03.

Study on the Properties of Lagerstroemia indica Extract as an Anti-acne Cosmetic Material (배롱나무 꽃 추출물의 항여드름 화장품 소재로서의 특성 연구)

  • Jiyoung You;Se-young Oh;Yeji Im;Suwon Jeon;Kyung-Baeg Roh;Song-ah Choi;Eunae Cho;Deokhoon Park;Eunsun Jung
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.50 no.1
    • /
    • pp.19-27
    • /
    • 2024
  • This study is to propose Lagerstroemia indica flower as an anti-acne cosmetic material, and confirmed the sebum control, anti-inflammatory, and antioxidant effects using Lagerstroemia indica flower extract (LIFE) . As a result of evaluating the sebum control effectiveness, it was confirmed that LIFE inhibited the production of sebum excessively induced with palmitic acid up to 65%. Subsequently, it was confirmed that LIFE has an antibacterial effect and the ability to inhibit lipase activity against Cutibacterium acnes (C. acnes), which mainly appears in acne lesions, and can also reduce the inflammatory response caused by virulence factors secreted by C. acnes. It was also confirmed that LIFE inhibited the secretion of nitrogen monoxide (NO) and prostaglandin E2 (PGE2), which are inflammatory mediators induced by LPS in macrophages, by 75% and 54%, respectively, and that it also had a high DPPH radical scavenging ability similar to that of ascorbic acid. These results suggest that LIFE, a natural extract, can be used as an anti-acne material to relieve and treat acne, a complex disease, by controlling sebum production and having antibacterial and lipase activity inhibiting against C. acnes, and anti-inflammatory, antioxidant properties.

Development of On-line Quantitative Analysis for Bioethanol Using Infrared Spectroscopy (적외선 분광분석을 이용한 바이오 에탄올 on-line용 정량분석법 개발)

  • Kim, Hyeonguk;Ryu, Jun-Hyung;Liu, J. Jay
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a new methodology for the real-time on-line quality monitoring of biofuel processes through the integration of infrared spectroscopy and chemometrics. A method of Partial Least Squares (PLS) in Chemometrics is employed for quantitative analysis of key components in bioethanol products. After a number of preprocessing methods and variable importance in projection (VIP) are used, Savitzky-Golay method showed the best performance in terms of spectrum correction, noise reduction, and model maintenance. The proposed method allows us to economically forecast the concentration of multiple impurities encountered with the production of bioethanol. The proposed system is also accurate enough ($R^2$ > 0.99) to replace the laboratory analysis.