• Title/Summary/Keyword: 바이오폴리우레탄

Search Result 31, Processing Time 0.02 seconds

Preparation and Properties of EPDM/Thermoplastic Polyurethane Scrap Blends (EPDM/열가소성 폴리우레탄 스크랩 블렌드의 제조 및 물성)

  • Lee, Young-Hee;Kang, Bo-Kyung;Yoo, Hye-Jin;Kim, Jung-Soo;Jung, Young-Jin;Lee, Dong-Jin;Kim, Han-Do
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.172-179
    • /
    • 2009
  • The thermoplastic polyurethane waste (TPU-S) with good tensile properties, hardness, NBS abrasion resistance, specific gravity and low wet coefficient of kinetic friction was melt-blended with ethylene propylene diene monomer rubber (EPDM) with high wet slip resistance and low mechanical properties to form EPDM/TPU-S blend films, and their composition-property relationship was investigated to find the optimum composition for shoe outsole material. The properties except the wet slip resistance increased with increasing TPU-S contents in the blend. All the properties except elongation at break, specific gravity and the wet coefficient of kinetic friction in the range of $0{\sim}65\;wt%$ of TPU-S did not attain the values predicted by the simple additive rule. The optimum weight ratio of EPDM/TPU-S for the application to the typical shoe outsole material was found to be 30/70.

Removal of VOC compounds in the vent of a pharmaceutical plant using a pilot-scale biofilter (Pilot-scale 바이오필터를 이용한 제약공정 배출가스의 처리)

  • Ryu, Hee-Wook;Lee, Tae-Ho;Park, Chang-Ho
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.470-473
    • /
    • 2008
  • A pilot-plant biofilter ($1750\;m\;W{\times}2750\;mm\;L{\times}2000\;mm\;H$) packed with polyurethane foam ($20\;m\;W{\times}20\;mm\;L{\times}20\;mm\;H$) was installed in an pharmaceutical plant emitting gas streams containing n-hexane and alcohols. The biofilter was successfully operated for 74 days under highly fluctuating incoming concentrations at a residence time of 12.8-24.8 sec. Alcohols and n-hexane were removed by more than 90% from 5 and 20 days after start up, respectively. Malodor was also removed more than 95% from 20 days after start up.

Removal Characteristics of H2S in the Biofilter Packed with Activated Carbon/Polyurethane Composite Media (활성탄/폴리우레탄 복합담체를 충전한 바이오필터에서 H2S의 제거특성)

  • Gam, Sang Gyu;Gang, Gyeong Ho;Im, Jin Gwan;Lee, Min Gyu
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2004
  • A biofiltration system using activated carbon/polyurethane composite as solid support inoculated with Bacillus sp. was developed for treating a gaseous stream containing high concentrations of H$_2$S. The effects of operating condition such as the influent H$_2$S concentration and the empty bed contact time (EBCT) on the removal efficiency of H$_2$S were investigated. The biofilter showed the stable removal efficiencies of over 99 % under the EBCT range from 15 to 60 sec at the 300 ppmv of H$_2$S inlet concentration. When the inlet concentration of H$_2$S was increased, the removal efficiencies decreased, reaching 95 and 74%, at EBCTs of 10 and 7.5 sec, respectively. The maximum elimination capacity in the biofilter packed with activated carbon/polyurethane composite media was 157 g/m$^3$/hr.

Preparation and Characterization of Polyurethane Bioadhesive from Hydroxyl-terminated Polylactide and Imidazole-blocked Isocyanate (말단 수산화기를 가진 폴리락타이드와 이미다졸로 블록된 이소시아네이트를 이용한 폴리우레탄 바이오접착제의 합성 및 물성 평가)

  • Shen, Tengfei;Sun, Yingjuan;Sun, Chunfeng;Lu, Mangeng
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.232-239
    • /
    • 2013
  • A series of novel imidazole-blocked diisocyanate bioadhesives (IBAs) were synthesized from reaction of toluene 2, 4-diisocyanate (TDI), isophorone diisocyanate (IPDI), hydroxyl-terminated polylactide (HO-PLA-OH), 1,1,1-trimethylolpropane (TMP), and imidazole. Synthesis of IBAs was confirmed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) revealed that the TDI-based IBA had lower thermal dissociation temperature and a faster deblocking rate than IBA based on IPDI. Hydroxyl-terminated polyurethane (HPU) was introduced to study the adhesive effect of the synthesized IBAs. Improvement on elastic modulus, tensile strength and water resistance of IBA-modified HPU in comparison with neat HPU suggested the good adhesive effect of IBA due to the strong chemical reaction between released NCO groups from IBA and hydroxyl groups from HPU.

Synthesis and Characterization of Polyurethane for Artificial Leather Using Bio Polyol (바이오 폴리올을 이용한 인공피혁 코팅용 폴리우레탄의 합성 및 특성)

  • Sur, Suk-Hun;Choi, Pil-Jun;Ko, Jae-Wang;Lee, Jae-Yeon
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.321-328
    • /
    • 2018
  • Wet polyurethane resin was synthesized by using polytrimethylene ether glycol prepared from 1,3-propanediol produced by fermentation from corn sugar as bio polyol and polyether-polyol(PTMG). Physical properties and cell characteristics by wet coagulation were investigated using the synthesized wet polyurethane resin. The tensile strength of wet polyurethane resin decreased with increasing content of bio polyol as copolymer polyol, but it tended to increase elongation at break and tear strength. As a result of thermal characteristic analysis, it was found that the glass transition temperature was slightly increased as the content of bio polyol increased. As a result of comparing the cell characteristics by the wet coagulation method, it was found that the shape of the cell was good when the ether polyol and the bio polyol were used alone.

Selection of Biofilter Support for Removing MEK (MEK 제거를 위한 바이오필터용 담체의 선택)

  • Jeong Gwi-Taek;Lee Gwang-Yeon;Lee Kyoung-Min;Sunwoo Chang-Shin;Lee Woo-Tae;Jung Seong-Ho;Cha Jin-Myoung;Jang Young-Seon;Park Don-Hee
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.34-41
    • /
    • 2006
  • The aim of this study is the development of biological removal process of methyl ethyl ketone (MEK) in odor gas, which is generated from the waste food recycling process. To develop the removal process of odor gas, MEK, the selection of proper biofilter support was carried out. When the biofilter equipment was passed by synthetic odor gas composed of 250 ppm of MEK, the maximum removal was achieved to $586.6g-MEK/m^3\;hr$ for polypropylene fibril as support. Under the same experimental conditions, the maximum removal in polyurethane support was obtained to $359.7 g-MEK/m^3\;hr$. Finally, the maximum removal in volcanic stone support was $56.2g-MEK/m^3\;hr$.

Biofiltration of Gaseous Toluene Using Activated Carbon Containing Polyurethane Foam Media (활성탄 함유 폴리우레탄 담체를 사용하는 바이오필터에 의한 가스상 톨루엔의 처리)

  • Amarsanaa Altangerel;Shin Won-Sik;Choi Jeong-Hak;Choi Sang-June
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.513-525
    • /
    • 2006
  • In recent decades, biofiltration has been widely accepted for the treatment of contaminated air stream containing low concentration of odorous compounds or volatile organic compounds (VOCs). In this study, conventional biofilters packed with flexible synthetic polyurethane (PU) foam carriers were operated to remove toluene from a contaminated air stream. PU foams containing various amounts of pulverized activated carbon (PAC) were synthesized for the biofilter media and tested for toluene removal. Four biofilter columns were operated for 60 days to remove gaseous toluene from a contaminated air stream. During the biofiltration experiment, inlet toluene concentration was in the range of 0-150 ppm and EBRT (i.e., empty bed residence time) was kept at 26-42 seconds. Pressure drop of the biofilter bed was less than 3 mm $H_2O/m$ filter bed. The maximum removal capacity of toluene in the biofilters packed with PU-PAC foam was in the order of column II (PAC=7.08%) > column III (PAC=8.97%) > column I (PAC=4.95%) > column IV (PAC=13.52%), while the complete removal capacity was in the order of column II > column I > column III > column IV. The better biofiltration performance in column II was attributed to higher porosity providing favorable conditions for microbial growth. The results of biodegradation kinetic analysis showed that PU-PAC foam with 7.08% of PAC content had higher maximum removal rate ($V_m$=14.99 g toluene/kg dry material/day) than the other PU-PAC foams. In overall, the performance of biofiltration might be affected by the structure and physicochemical properties of PU foam induced by PAC content.

Preparation and Comparison the Physical Properties of Polyurethane-Urea Using Biomass Derived Isosorbide (바이오매스 유래 이소소르비드를 이용한 폴리우레탄-우레아의 제조 및 특성 비교)

  • Park, Ji-Hyeon;Park, Jong-Seung;Choi, Pil-Jun;Ko, Jae-Wang;Lee, Jae-Yeon;Sur, Suk-Hun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.165-176
    • /
    • 2019
  • Polyurethane-ureas(PUUs) were prepared from 4,4'-methylenebis(cyclohexyl isocyanate) and various diols including isosorbide. Isosorbide is starch-derived monomer that exhibit a wide range of glass transition temperature and are therefore able to be used in many applications. PUU was synthesized by a pre-polymer polymerization using a catalyst. Successful synthesis of the PUU was characterized by fourier transform-infrared spectroscopy. Thermal properties were determined by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. It was found that by tuning isosorbide content in the resin, their glass transition temperature(Tg) slightly decreased. Physical properties were also determined by tensile strength and X-ray diffraction. There is no significant differences between petroleum-derived diol and isosorbide in XRD analysis. Moreover, their physical and optical properties were determined. The result showed that the poly(tetramethylene ether glycol)/isosorbide-based PUU exhibited enhanced tensile strength, transmittance, transparency and biodegradability compared to the existing diols. After 11 weeks composting, the biodegradability of blends increased in ISB-PUU. The morphology of the fractured surface of blend films were investigated by scanning electron microscopy.

Removal of $NH_3$ Gas by a Biofilter Packed with Bio-Carrier Composed of Waste Polyurethane and Wormcast (폐 폴리우레탄과 분변토 미생물담체가 충전된 Biofilter에서의 $NH_3$ 가스의 제거)

  • Lim, Joung-Soo;Lee, Eun-Young
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.122-126
    • /
    • 2007
  • When ammonia ($NH_3$) gas was supplied to a biofilter packed with bio-carrier made of waste polyurthane and worm cast. No odor gases were detected at the outlet of the biofilter when $NH_3$ gas was supplied to the biofilter at the space velocity(SV) of $50\;h^{-1}$ until the inlet $NH_3$ concentration increased to $4\;{\sim}\;454\;ppmv$. The gradual inlet $NH_3$ concentration was set and the removal efficiency of $NH_3$ gas was measured at each condition, while the SV of $NH_3$ increased step by step from 100 to $400\;h^{-1}$. The maximum possible inlet $NH_3$ loading was $11.38\;g-NH_3{\cdot}m^{-3}{\cdot}h^{-1}$ and $34.42\;g-NH_3{\cdot}m^{-3}{\cdot}h^{-1}$ while maintaining the removal efficiency of 100% when the SV was $50\;h^{-1}$ and $100 \;h^{-1}$, respectively. The maximum $NH_3$ loading was $71.28 \;g-NH_3{\cdot}m^{-3}{\cdot}h^{-1}$ with the $NH_3$ removal efficiency of 99.85% at SV $300\;h^{-1}$.

  • PDF

Planar microchip-based lactate biosensor (평면 소자형 락테이트 바이오센서)

  • Ha, Jeonghan;Huh, Hwang;Kang, Tae Young;Lee, Yong Seok;Yoon, Soon Ho;Shin, Jungwon;Nam, Hakhyun;Cha, Geun Sig
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.482-489
    • /
    • 2006
  • Two electrode-based lactate biosensor was prepared by immobilizing lactate oxidase (LOD) obtained from pediococcus species in a poly(vinyl alcohol). Hydrogen peroxide ($H_2O_2$) produced by the reaction of lactate and LOD was detected on the Pt-black that was electrochemically deposited on the Au electrode. Sensors fabricated with Pt-black deposited Au electrode provided a high current of $H_2O_2$ oxidation at a substantially lowered applied potential (+300 mV vs. Ag/AgCl), resulting in reduced interferences from easily oxidizable species such as ascorbic acid, acetaminophen, and uric acid. An outer membrane is formulated by adjusting water uptake of hydrophilic polyurethane (HPU). The sensor performance was evaluated in vitro with both flow-through arrangement and static mode. The sensor showed a linear range from 0.1 mM to about 9.0 mM in 0.05 M phosphate buffer (pH 7.6) containing 0.05 M NaCl. Storing the sensors prepared in this work at $4^{\circ}C$ buffer solution while not in use, they provided same electrochemical performance for more than 25 days.