• 제목/요약/키워드: 바이오데이터

검색결과 378건 처리시간 0.033초

온톨로지를 이용한 웹서비스 기반 바이오 정보 시스템의 설계 및 구현 (Design and Implementation of a Web-Service based Bio-Informatics System using GO knowledge-base)

  • 박용일;박성수;이종근;홍동완;윤지희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.31-34
    • /
    • 2005
  • 최근 국, 내외에서 생물정보학 데이터베이스 구축이 활발히 진행되어 왔고, 각 바이오 정보 시스템의 데이터 통합 연구가 진행 중이다. 대표적인 바이오 데이터베이스 시스템인 GenBank, DDBJ, EBML 등은 같은 의미의 데이터라 하더라도 각 시스템의 내부 데이터 구조 및 데이터 표현 형식이 상이하여 통합에 어려움이 따른다. 이를 해결하기 위해 통합 데이터 형식을 지원하는 웹 서비스 기반 데이터 통합 방식이 제안되고 있다. 현재 국내 웹 서비스 기반의 바이오 정보 제공 사이트들은 SOAP을 이용한 단순 메시지 전달 기법으로 초보적인 단계라 할 수 있다. 본 논문에서는 SOAP을 이용한 단순한 메시지 전달 기법만이 아닌 레지스트리 서버 검색을 통해 서비스 제공자를 찾고, WSDL문서를 분석한 후 사용자에게 검색 메소드를 제공함으로써 빠르고 정확한 서비스를 제공하여 기존에 구축된 시스템의 단점을 보완한다. 또한 상이한 스키마로 이루어진 데이터들을 효과적으로 통합하기 위해 온톨로지를 이용한 웹 서비스 기반 바이오 정보 시스템을 제안하고 구현한다.

  • PDF

구글 학술 검색 기반의 질병과 바이오마커 관계 분석 (Relation Analysis of Disease and Biomarker based on Google Scholar)

  • 오병두;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 하며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF

구글 학술 검색 기반의 질병과 바이오마커 관계 분석 (Relation Analysis of Disease and Biomarker based on Google Scholar)

  • 오병두;김유섭
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 히며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF

K-means 알고리즘을 사용한 분산 바이오 데이터 통합화 (Integration of Distributed Biological Data using Modified K-means Algorithm)

  • 류병걸;신동규;신동일;정종일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 한국컴퓨터종합학술대회논문집 Vol.34 No.1 (B)
    • /
    • pp.32-35
    • /
    • 2007
  • Bioinformatics의 목표는 생물학적인 질의를 해결하는 것과 생물학자들이 수집된 데이터를 분석하고 검색을 하여 생물학자들이 정확한 일을 수행하는 것이다. 인터넷은 여러 조사 그룹의 데이터베이스에 동시에 접근가능한 수단을 제공했으나 이러한 분산 환경에서 많은 양의 데이터는 전송 시의 시간 지연 문제와 최종 검색시의 느린 검색 속도 문제를 나타낸다. 데이터 클러스터링은 데이터의 검색시 이러한 문제점을 해결하기 위하여 이용될 수 있는 방법이지만 단순 적용시에는 데이터의 양에 비례하는 실행 시간이 또 다른 문제를 발생시킨다. 본 논문에서는 바이오데이터의 효율적인 클러스터링을 위한 개선된 분산 클러스터링 시나리오와 이를 위해 수정된 K-means 알고리즘을 제시한다. 최종 실험 결과는 20% 이상 향상된 실행 속도를 보여준다.

  • PDF

임베디드 시스템을 위한 PSO 기반의 군집화 알고리즘의 구현 (The implementation of PSO clustering Algorithm for Embedded Systems)

  • 맹보연;최옥주;이민수
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 춘계학술발표대회
    • /
    • pp.290-293
    • /
    • 2009
  • 바이오 칩 분석 시스템은 유전자와 실험의 두 축으로 이루어진 바이오 칩에서 자료를 추출하고 필요한 정보를 얻기 위해 데이터를 분석하는 시스템이다. 유전자 데이터를 효율적으로 분석할 수 있는 방법으로 바이오 칩 분석 시스템이 각광받으면서 데이터의 양과 종류가 방대해지고 메모리의 효율적인 사용과 이에 따른 속도 개선을 위해 임베디드 시스템이 필요해지고 있다. 이에 따라 본 연구에서는 임베디드 시스템을 위한 PSO 기반의 군집화 알고리즘을 구현하였다. 방대한 양의 유전자 데이터를 분석하기 위해 생태계 모방 알고리즘인 Particle Swarm Optimization 알고리즘과 비슷한 유전자의 분류를 위한 기법으로 군집화를 사용하여 유전자 데이터의 통합 분석 시스템을 구현, 사용자에게 더욱 효율적으로 정보를 제공한다. 본 논문에서는 방대한 양의 데이터의 최적화에 효율적인 생태계 모방 알고리즘 Particle Swarm Optimization 을 이용하여 데이터들을 군집화하는 알고리즘을 임베디드 시스템을 위해 구현한 방법을 기술하고 있다.

Comparative Study of NIR-based Prediction Methods for Biomass Weight Loss Profiles

  • Cho, Hyun-Woo;Liu, J. Jay
    • 청정기술
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2012
  • 바이오매스가 가진 재생 가능성과 환경적인 장점으로 인해 바이오매스는 바이오에너지와 다른 제품의 주요 원료가 되었다. 바이오매스의 중요 성질을 예측하기 위해 분광학 데이터를 이용하는 연구를 포함한 많은 연구가 수행되었는데 근적외선 분광학은 빠르고 신뢰성 있는 결과를 저비용으로 제공하는 비파괴 방법이기 때문에 널리 사용되었다. 이 연구에서는 서로 다른 여섯가지의 목질계 바이오매스의 근적외선 스펙트럼 데이터를 기반으로 질량 손실 프로파일을 예측하는 다변량 통계기법을 개발하였으며, 상관없는 잡음을 제거하고 근적외선 데이터를 잘 설명하는 파장대역을 선택하기 위해 웨이블릿 분석이 사용되었다. 실제 근적외선 데이터를 가지고 개발된 방법을 예시하였는데 이 때 여러가지 예측모델이 예측 성능을 기준으로 평가되었고 적절한 근적외선 스펙트럼 전처리법의 장점 또한 설명되었다. 웨이블릿으로 압축된 근적외선 스펙트럼을 이용한 부분최소자승법 예측모델이 가장 좋은 성능을 보였으며 개발된 방법은 바이오매스의 빠른 분석에 쉽게 적용될 수 있음 또한 증명되었다.

재활 로봇을 위한 심전도(ECG) 실시간 데이터 베이지안 최적화 분석 기술 (Real-time ECG Data Bayesian Optimization Analysis for Rehabilitation Robots)

  • 최진탁;강경태
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.53-56
    • /
    • 2022
  • 본 논문에서는 심전도(ECG) 센서와 에지 컴퓨팅(Edge computing)을 활용하여 실시간 데이터와 Bayesian optimization을 통한 기계학습 알고리즘으로 재활 로봇에서 발목을 제어할 수 있는 Parameter(외골격 관련) 최적값을 출력한다. 심전도 센서 적용을 기반으로 하는 바이오 데이터 기술, 기계 학습(Bayesian optimization) 모델 접근 방식과 하드웨어 결합으로 재활 로봇 모터를 제어할 수 있는 Parameter 제공과 실시간 모터 제어 운영할 수 있도록 분석 플랫폼을 구축한다. 이 플랫폼을 이용해보다 효과적인 이동형 로봇설계 및 처리 방법을 연결할 수 있는 발판을 마련하였고, 로봇제어에 많이 사용하고 있는 매트랩 시뮬링크(Matlab simulink)를 연결할 수 있는 범용 통신 지원한다. 센서-전처리-인공지능 알고리즘-모터 제어 Parameter로 연계되는 데이터 가공과 처리 방법으로 최근 분석 기법을 적용하여 바이오 데이터 연구 활동과 이동형 재활 로봇 관련 데이터 분석 분야를 쉽게 접근할 수 있도록 한다.

  • PDF

안드로이드 플랫폼 기반의 임상 바이오신호 처리를 위한 모바일 헬스 시스템 (m-Health System for Processing of Clinical Biosignals based Android Platform)

  • 서정희;박흥복
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.97-106
    • /
    • 2012
  • 모바일 장치에서의바이오신호데이터의 관리는 용량이많은 실시간멀티미디어 데이터의전송이나 저장 장치에서 많은 문제점을야기시킨다. 따라서 본 논문은신속한 의료 서비스를 제공하기 위해서 모바일을 이용한 임상 데이터 처리 시스템인 m-Health 시스템을 제안한다. 이 시스템은 지역의 IP 네트워크 상의 헬스 시스템을 구축하여 원격의 여러 바이오 센싱으로 부터 출력을 조합하고, 다양한 바이오 센서에서의 전자적인 데이터 통합 처리를 수행하였다. m-Health 시스템은 다양한 바이오신호들을 측정 및 모니터링하고 원거리에 위치한 병원의 데이터 서버로 전송한다. 환자 및 가족, 의료진 모두가 언제 어디서나 사용할 수 있는 안드로이드 기반의 모바일 애플리케이션으로 의료 관련자는 병원의 데이터 서버에서 환자 데이터를 접근하여 환자 또는 사용자에게 의료 진단 및 처방을 피드백 한다. 그리고 환자 관찰을 위한 비디오 스트림은 스케일러블 트랜스코딩 기법을 이용하여 네트워크 트래픽에 알맞은 데이터 크기를 결정하고 비디오 스트림을 전송함으로서 모바일 시스템과 네트워크의 부하를 줄일 수 있다.

국가 연구데이터플랫폼과 바이오 연구데이터플랫폼의 메타데이터 상호운용성에 관한 연구 (A Study on Metadata Interoperability between the National Research Data Platform and the Bio Research Data Platform)

  • 박성은;고영만
    • 정보관리학회지
    • /
    • 제39권2호
    • /
    • pp.159-202
    • /
    • 2022
  • '국가 연구데이터플랫폼'과 '바이오 연구데이터플랫폼'은 비교적 최근 구축되어 활발하게 각각의 생태계를 만들어 가고 있다. 따라서 다른 메타데이터 표준을 기반으로 독립적으로 구축되어 향후 상호운용성의 문제가 발생할 수 있다. 본 연구의 목적은 각 플랫폼의 메타데이터 요소를 매핑하고, 이를 검증하여 상호운용성을 확보하기 위한 기반을 제안하는 것이다. 이를 위해 각 플랫폼의 메타데이터 표준을 분석하고 크로스워크 대상을 선정하여 매핑한 후, 바이오 분야 전문가를 통해 매핑된 요소의 적합성을 검증하고 더 적절한 매핑 요소를 추천받아 데이터셋 및 파일에 대한 메타데이터 요소를 도출하였다. 이를 통해 각 플랫폼의 메타데이터가 의미적으로 연결될 수 있는 가능성과 상호운용성 확보를 위한 기반을 확인할 수 있었다.