• Title/Summary/Keyword: 바이오가스 생산량

Search Result 55, Processing Time 0.032 seconds

A Study on Increasing the Efficiency of Biogas Production using Mixed Sludge in an Improved Single-Phase Anaerobic Digestion Process (개량형 단상 혐기성 소화공정에서의 혼합슬러지를 이용한 바이오가스 생산효율 증대방안 연구)

  • Jung, Jong-Cheal;Chung, Jln-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.588-597
    • /
    • 2016
  • In this study, we attempted to improve the biogas production efficiency by varying the mixing ratio of the mixed sludge of organic wastes in the improved single-phase anaerobic digestion process. The types of organic waste used in this study were raw sewage sludge, food wastewater leachate and livestock excretions. The biomethane potential was determined through the BMP test. The results showed that the biomethane potential of the livestock excretions was the highest at $1.55m^3CN4/kgVS$, and that the highest value of the composite sample, containing primary sludge, food waste leachate and livestock excretions at proportions of 50%, 30% and 20% respectively) was $0.43m^3CN4/kgVS$. On the other hand, the optimal mixture ratio of composite sludge in the demonstration plant was 68.5 (raw sludge) : 18.0 (food waste leachate) : 13.5 (livestock excretions), which was a somewhat different result from that obtained in the BMP test. This difference was attributed to the changes in the composite sludge properties and digester operating conditions, such as the retention time. The amount of biogas produced in the single-phase anaerobic digestion process was $2,514m^3/d$ with a methane content of 62.8%. Considering the value of $2,319m^3/d$ of biogas produced as its design capacity, it was considered that this process demonstrated the maximum capacity. Also, through this study, it was shown that, in the case of the anaerobic digestion process, the two-phase digestion process is better in terms of its stable tank operation and high efficiency, whereas the existing single-phase digestion process allows for the improvement of the digestion efficiency and performance.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Biogas Production Effect by addition of Red Pepper Powder through Single Stage Anaerobic Co-Biogasification of Mechanically Pre-treated Food Waste and Primary Sewage Sludge Mixture (하수슬러지와 음식폐기물의 단상 혐기성 통합 소화 처리 시 고춧가루 함량 변화가 바이오 가스 생산에 미치는 영향)

  • Lee, Byung Sun
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.59-68
    • /
    • 2017
  • This study has been conducted to evaluate the effects of a single stage anaerobic co-biogasification of food waste and primary sewage sludge mixture (1 : 5 V/V%) according to mixing ratio (0% : CAP0, 0.5% : CAP0.5, 1%: CAP1.0) in red pepper powder, which was reported as the material anti-bacterial and anti-fungi, under mesophilic condition ($35^{\circ}C$). during 31 days. It showed that red pepper powder effected anaerobic bacteria, Especially, Hydrolytic bacteria and methanogenic bacteria was inhibited much more than Acetogenic bacteria with red pepper powder. at CAP0, Experimental cumulative methane yield (ECMY) and Experimental bio-energy production (EBEP) were 0.17 L $CH_4/g$ $VS_{fed}$ and 1,465 cal/g $VS_{fed}$ individually as the highest value during 31 days.

폐지 슬러지를 이용한 혐기성 메탄발효 특성 분석

  • Jo, Geon-Hyeong;Kim, Jung-Gon;Jeong, Hyo-Gi;Kim, Seong-Jun;Kim, Si-Uk
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.367-370
    • /
    • 2003
  • This study was carried out to investigate the possibility for reuse of solid organic wastes such as saccharified newspapers and boxes by two-phase anaerobic fermentation system. When 15g of newspaper and box wastes were digested for 24 days by batch fermentation, tCOD removal rate were found to be 60.9 and 62.4%, respectively. During this period, the amounts of biogas produced were 6.95 and 6.43L. The removal efficiencies of total solid were 34.8 and 33.4%, and those of volatile solid were 40.0 and 39.2%, respectively. That pH was around 7.5 after 20-days operation means methane fermentation is well advanced. In case of semicontinuous reaction, tCOD removal efficiencies of newspaper and box wastes were 64.7 and 65.0%, respectively for 14-days operation. It has been shown that each of the average biogas amounts produced after 25 days operation (stabilization stage for methane fermentation) was 0.31 and 0.30L/g dry wt./day, respectively, and each methane contents was 57.3 and 56.2%, respectively. After the reaction continued for 25 days, pHs in the anaerobic acidogenic and methanogenic fermenters were shown to be 5.0 and 7.5, respectively.

  • PDF

Continuous Hydrogen Gas production by Immobilized Anaerobic Microorganisms (고정화 혐기성 미생물에 의한 연속적인 수소 생산)

  • 김정옥;김용환;류정용;송봉근;김인호
    • KSBB Journal
    • /
    • v.18 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • Hydrogen producing acidogenic microorganisms were self-immobilized using organic-inorganic hybrid polymer within 5 minutes. During the continuous tratment of synthetic wastewater at a hydraulic retention time of 20 hours, at 37$^{\circ}C$, pH 5.0, the self-immobillized granules were maintained in a stirred tank reactor. The black colored granules gradually became milky. Image analysis showed that the mean diameter of the milky colored granules ranged from 1.5 to 20. mm. The maximum bio-gas procuction rate was 380 ml/L/hy and the concentration of H$_2$was around 50%, while no methane was detected. Granular ECP was extracted and its content was measured to elucidate the role of the organic-inorganic hybrid polymer. Further increases of granule concentration are expected to increase the hydrogen production rate.

A Study on the Validity of Rural Type Low Carbon Green Village Through Case Analysis (사례분석을 통한 농촌형 저탄소 녹색마을 타당성 검토)

  • Do, In-Hwan;Hwang, Eun-Jin;Hong, Soo-Youl;Phae, Chae-Gun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.12
    • /
    • pp.913-921
    • /
    • 2011
  • This study examined the overall feasibility of low carbon green village formed in rural area. The check method is analyzing its environmental and economic feasibility and energy self-reliance. The biomass of the villages was set as 28 ton/day of livestock feces and 2 ton/day of cut fruit tree branches which make up the total of 30 ton/day. The facility consisted of a bio gasfication facility using wet (livestock feces) biomass and combined heat power generator, composting facility and wood boiler using dry (cut fruit tree branches) biomass. When operating the system, 540,540 kWh/yr of electricity and 1,762 Gcal/yr of heat energy was produced. The region's electricity energy and heat energy self-reliance rate will be 100%. The economic feasibility was found as a loss of 140 million won where the facility installation cost is 5.04 billion won, operation cost is 485.09 million won and profit is 337.12 million won. There will be a loss of about 2.2 billion won in 15 years but in the environmental analysis, it was found that crude replacement effect is about 178 million won, greenhouse gas reduction effect is about 92 million won making up the total environmental benefit of 270 million won. This means, there will be a yearly profit of about 130 million won. In terms of its environmental and economic feasibility and energy self-reliance, this project seemed to be a feasible project in overall even if it manages to get help from the government or local government.

Differences of Soil Carbon by Green Manure Crops in Rotated Cropping System (윤작지 녹비작물종류에 따른 토양탄소 함량 변화)

  • Kim, Kyeong-Mok;Lee, Byeong-Jin;Cho, Young-Son
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1027-1031
    • /
    • 2012
  • This experiment was conducted to select winter-adaptable crop system or cropping systems for an enhanced carbon (C) fixation amount in plant biomass and soil. Single or mixed cropping systems of green manure crops, rye (R), triticale (TC), hairy vetch (HV), TC+HV, and control (fallow) were investigated during winter and spring. The amount and content of C and N in the above-ground biomass and soil C content by soil depth were measured under different green manure crops. The above-ground biomass was highest in TC+HV followed by R and TC with 664, 585, and 545 kg $10a^{-1}$, which exceeded the biomass of control by 181, 160, and 149%, respectively. The amount of C accumulation was higher in soil surface than deep soil. which was a similar pattern to the above-ground biomass. Therefore, green manure cropping in winter and spring seasons will be very helpful of improve soil organic matter.

Experimental Study of Gasification Characteristics of Low-rank Liquid Fuel and Producer gas Generation in a Fluidized Bed Reactor (유동층 반응기에서 액상의 저급 연료 가스화 특성 실험 및 프로듀서 가스 생산을 위한 연구)

  • Kim, Youngdoo;Jeong, Soohwa;Jung, Jaeyong;Yang, Won;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.25-28
    • /
    • 2014
  • In this study, waste cooking oil was gasified in a fluidized bed reactor. The main objective of this study was to produce clean producer gas for power generation engine. As a result, heating value of producer gas is suitable for engine operation and tar content in producer gas was satisfied after use of activated carbon filter. Results from a lab scale experiment and a preliminary results from a pilot scale experiment will be presented.

  • PDF

Study on Manufacturing Emulsion Oil Using Biodiesel Feedstock Oil Production By-product (바이오디젤 원료유 생산 부산물을 이용한 유화유 제조 연구)

  • Kim, Deogkeun;Jeon, Sanggoo;Yoon, Sangjun;Park, Soonchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.106.2-106.2
    • /
    • 2010
  • 동식물성 기름과 메탄올의 전이에스테르화 반응에 의해 생산되는 바이오디젤은 환경친화성과 지속가능성이 인정됨에 따라 그 생산량이 급격히 증가하고 있어 대두유, 유채유, 팜유 등의 원료유 부족과 가격 상승, 수급 불안정 등의 문제가 대두되고 있다. 이를 해결하기 위한 방안으로 유리지방산 함량이 높은 저가유지 자원(폐식용유, 폐돈지, 폐우지, soapstock, trapped grease)과 새로운 오일 작물을 이용한 생산 기술 연구가 활발히 진행되고 있다. 본 연구에서는 비활용 해외 열대작물 씨앗에서 착유한 식물성 오일을 정제하여 바이오디젤 원료유를 생산하는 과정에서 발생하는 폐기물(폐유, 폐수)의 경제적 처리 방안으로 유화유 제조 원료(벙커C유, 물)와 유화유 제조 첨가제(무기계, 유기계)로 활용 가능성을 검토하였다. 열대작물 오일의 물성 분석 결과 고형물, 수분, 인지질(phospholipid), 유리지방산(free fatty acid) 함량이 기존 원료유보다 매우 높게 나타났다. 인지질은 바이오디젤 제조 반응후 에스테르와 글리세린의 층분리를 방해하고 유리지방산은 염기촉매와 결합하여 지방산염을 생성해 생산 수율을 감소시킨다. 고형물과 수분 역시 촉매반응에 악영향을 가지나 여과와 감압증발에 의해 쉽게 제거가 가능하다. 유리지방산은 산촉매 에스테르화 반응에 의해 제거가 가능하다. 인지질은 탈검(degumming) 과정을 통해 제거하며 탈검은 수용성 탈검, 산 탈검, 세정 공정으로 구성된다. 착유한 원료유의 고형물을 제거 후 물과 수세하여 수용성 인지질을 수화하여 층 분리해 제거하고 상층의 오일은 추가적인 산 탈검을 수행한다. 그 뒤 세정을 통해 사용된 탈검제인 산과 추가적으로 수화된 인지질을 제거하게 된다. 이러한 3단계의 탈검 과정에서 하층으로 오일과 물이 폐기물로서 배출되며 본 연구에서는 배출 폐기물을 다시 층분리하여 오일층과 물 층으로 구분하여 유화유 제조에 사용되는 벙커C유, 물, 그리고 기존 유기계 및 무기계 유화제의 대체 가능성을 조사하였다. 유화 연료유는 기름과 물을 균일한 분산상으로 혼합한 연료유로 연소시 오일계 성분의 미연분을 감소시켜 연료 효율 제고와 배출가스 성상을 개선하기 위해 개발되어 왔다. 본 발표에서는 다양한 종류의 상용 첨가제 및 바이오디젤 원료유 생산 폐기물을 활용해 유화 연료유를 제조하였으며 각 유화유의 장시간의 상(phase) 안정성을 비교하였다. 바이오 폐기물 중에는 천연 계면활성제(surfactant)인 인지질이 다량 함유되어 있어 기존의 무기계 및 유기계 유화제보다 상 안정성이 우수하게 나타났으며 바이오디젤 원료유 생산 공정의 폐기물인 폐유과 폐수의 활용이 가능한 것으로 나타났다.

  • PDF

Bioenergy and Material Production Potential by Life Cycle Assessment in Swine Waste Biomass (전과정 평가에 의한 양돈 바이오매스의 물질 및 에너지 자원화 잠재량 연구)

  • Kim, Seung-Hwan;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1245-1251
    • /
    • 2011
  • As a result of the growing livestock industry, varieties of organic solid and waste biomass are be generated in swine breeding and slaughtering stages. Anaerobic digestion is a promising alternative for the treatment of livestock waste biomass, as well as for the material recovery and energy production. Objectives of this study were to analyze the biochemical methane potential of swine waste biomasses that were generated from swine pen and slaughterhouse and to investigate the material recovery and methane yield per head. As pig waste biomass, swine slurry, blood, intestine residue, and digestive tract content were collected for investigation from pig farmhouse and slaughterhouse. The $B_{th}$ (Theoretical methane potential) and $B_0$ (Biochemical methane potential) of swine slurry generating in swine breeding stage were 0.525 and $0.360Nm^3\;kg^{-1}-VS_{added}$, the ratio of degradation ($B_0/B_{th}$) was 68.6%. $B_{th}$ of blood, intestine residue, and digestive tract content were 0.539, 0.664, and $0.517Nm^3\;kg^{-1}-VS_{added}$, and $B_0$ were 0.405, 0.213, and $0.240Nm^3\;kg^{-1}-VS_{added}$, respectively. And the ratio of degradation showed 75.1, 32.1, and 46.4% in blood, intestine residue, and digestive tract content. Material yield of swine waste biomass was calculated as TS 73.79, VS 46.75, TN 5.58, $P_2O_5$ 1.94, and $K_2O$ $2.91kg\;head^{-1}$. And methane yield was $16.58Nm^3\;head^{-1}$. In the aspect that slaughterhouse is a large point source of waste biomass, while swine farmhouse is non-point source, the feasibility of an anaerobic digestion using the slaughtering waste biomass need to be assessed in the economical aspect between the waste treatment cost and the profitable effect by methane production.