DOI QR코드

DOI QR Code

Bioenergy and Material Production Potential by Life Cycle Assessment in Swine Waste Biomass

전과정 평가에 의한 양돈 바이오매스의 물질 및 에너지 자원화 잠재량 연구

  • 김승환 (국립한경대학교 바이오가스 연구센터) ;
  • 김창현 (국립한경대학교 바이오가스 연구센터) ;
  • 윤영만 (국립한경대학교 바이오가스 연구센터)
  • Received : 2011.11.19
  • Accepted : 2011.12.16
  • Published : 2011.12.31

Abstract

As a result of the growing livestock industry, varieties of organic solid and waste biomass are be generated in swine breeding and slaughtering stages. Anaerobic digestion is a promising alternative for the treatment of livestock waste biomass, as well as for the material recovery and energy production. Objectives of this study were to analyze the biochemical methane potential of swine waste biomasses that were generated from swine pen and slaughterhouse and to investigate the material recovery and methane yield per head. As pig waste biomass, swine slurry, blood, intestine residue, and digestive tract content were collected for investigation from pig farmhouse and slaughterhouse. The $B_{th}$ (Theoretical methane potential) and $B_0$ (Biochemical methane potential) of swine slurry generating in swine breeding stage were 0.525 and $0.360Nm^3\;kg^{-1}-VS_{added}$, the ratio of degradation ($B_0/B_{th}$) was 68.6%. $B_{th}$ of blood, intestine residue, and digestive tract content were 0.539, 0.664, and $0.517Nm^3\;kg^{-1}-VS_{added}$, and $B_0$ were 0.405, 0.213, and $0.240Nm^3\;kg^{-1}-VS_{added}$, respectively. And the ratio of degradation showed 75.1, 32.1, and 46.4% in blood, intestine residue, and digestive tract content. Material yield of swine waste biomass was calculated as TS 73.79, VS 46.75, TN 5.58, $P_2O_5$ 1.94, and $K_2O$ $2.91kg\;head^{-1}$. And methane yield was $16.58Nm^3\;head^{-1}$. In the aspect that slaughterhouse is a large point source of waste biomass, while swine farmhouse is non-point source, the feasibility of an anaerobic digestion using the slaughtering waste biomass need to be assessed in the economical aspect between the waste treatment cost and the profitable effect by methane production.

본 연구는 축산부문에서 주요한 가축종인 돼지의 사육과 정과 도축 가공과정에서 발생하는 양돈 바이오매스의 발생특성을 조사 분석하고, 전과정 평가 기법을 활용하여 물질(퇴 액비) 및 에너지 (바이오가스) 자원화 잠재량을 평가함으로써 지역단위 바이오매스 순환단지 조성을 위한 기초자료를 확립하고자 하였으며, 이를 위해 양돈 바이오매스의 발생 단계를 사양단계와 도축 가공단계로 구분하여 각각의 단계에서 발생하는 양돈바이오매스의 물질 및 에너지 자원화 잠재량을 평가하였다. 사양단계는 성장단계(사육기간, 평균체중)에 따라 자돈 (1~9주, 23.4 kg), 육성돈 1기 (10~15주, 50 kg), 육성돈 2기 (16~21주, 80 kg), 비육돈 (22~26주, 110 kg)의 단계로 분류하고 도축 가공단계에서 발생하는 혈액과 폐내장류, 장내 잔재물로 구분하여 생산량을 산정하여 양돈 바이오매스의 물질 및 에너지 자원 잠재량을 평가한 결과 돼지 1두에서 발생하는 바이오매스의 총량은 542.02 kg로 나타났다. 양돈 바이오매스는 분 $210.68kg\;head^{-1}$, 뇨 $315.78kg\;head^{-1}$가 발생하는 것으로 평가되었으며, 분뇨 발생량은 성장단계별로 자돈 14.2%, 육성돈 1기 19.6%, 육성돈 2기 30.9%, 비육돈 35.2%를 차지하는 것으로 나타났다. 양돈 바이오매스에서 기인하는 매탄 생산 잠재량은 $24.56Nm^3\;head^{-1}$이였으며, 사양 단계에서 기인하는 메탄 생산 잠재량이 92.9%를 차지하는 것으로 나타났다. BMP 시험에 의한 최대 메탄생산량은 $16.58Nm^3\;head^{-1}$로 나타나 매탄 생산 잠재량의 67.5%가 에너지로 전환 가능하였으며, 94.4%가 사양 단계에서 기인하는 것으로 나타났다.

Keywords

References

  1. Angelidaki, I., M. Alves, D. Bolzonella, L. Borzacconi, J. L. Campos, A. J. Guwy, S. Kalyuzhnyi, P. Jenicek, and J. B. van Lier. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59(5):927-934. https://doi.org/10.2166/wst.2009.040
  2. APHA. 1998. Standard Methods for the Examination of Water and Wastewater. 20th ed. American Public Health Association, Washington, DC, USA.
  3. Beuvink, J.M., S.F. Spoelstra, and R.J. Hogendrop. 1992. An automated method ofr measuring the time course of gas production of feedstuffs incubated with buffered rumen fluid. Neth. J. Agri. Sci. 40:401-407.
  4. Boyle, W.C. 1976. Energy recovery from sanitary landflls - a review. In: Schlegel, H.G. and Barnea, S. (Hrsg.): Microbial Energy Conversion: Oxford, Pergamon Press.
  5. Hansen, T.L, J.E. Schmidt, I. Angelidaki, E. Marca, J. Cour Jansen, H. Mosboek, and T.H. Christensen. 2004. Method for determination of methane potentials of solid organic easte. Waste Manage. 24:393-400. https://doi.org/10.1016/j.wasman.2003.09.009
  6. Hejnfelt, A. and I. Angelidaki. 2009. Anaerobic digestion of slaughterhouse by products. Biomass Bioenerg. 33(2009):1046-1054. https://doi.org/10.1016/j.biombioe.2009.03.004
  7. Heo, B.D., S.H. Kim, J.T. Yu, Y.K. Go, and S.M. Yang. 2002. The utilization of biogas production technology by anaerobic co-digestion using food waste and animal wastes. J. KORRA 9(4);29-34.
  8. Kim, J.M., J.T. Lee, and M.H. Cho. 2009. Characteristics of biogas production from organic wastes by BMP test. Theor. Appl. Chem. Eng.15(2):1578-1581.
  9. Kim, S.H. and H.S. Shin. 2009. Acidogenesis of lipids containing wastewater ib anaerobic sequencing batch reactor. J. KSEE. 31(12):1075-1080.
  10. Kim, S.H., H.C. Kim, C.H. Kim, and Y.M. Yoon. 2010. The measurement of biochemical methane potential in the several organic waste resources. Korean J. Soil Sci. Fert. 43(3):356-362.
  11. KREI. 2007. Polacy issues and strategies to boost biiomass utilization in agricultural sector: Problems and issues in Korea. Seoul, Korea.
  12. Lee, C.Y. 2007. Characteristics of methane production from piggery manure using anaerobic digestion. J. KORRA. 15(3):113-118.
  13. Lee, M.Y., C.W. Suh, H.S. Jeong. S.H. Lee, and H.S. Shin. 2004. A study model and estimation of ammonia inhibitionon onanaerobic methane fermentation. J. KSEE. 2004:86-99.
  14. Lee, Y.S., S.M. Hong, H.S. Park, U.S. Lee, and S.E. Oh. 2004. A comparative study of single and two-phase anaerobic system for distillery waster treatment in pilot plant. J. KSEE 13:485-192.
  15. MIFAFF. 2009. The study on design and establishment of biomass town. Gwacheon, Korea (in Korean).
  16. MIFAFF. 2011. Statistics for agriculture, fishery, and food (in Korean).
  17. Owen, W.P., D.C. Stuckey, J.B. Healy, L.Y. Young, and P.L. McCarty. 1979. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. Vol. 13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
  18. RDA. 2002. Technique for application of livestock liquid fertilizer. Suwon, Korea (in Korean).
  19. RDA. 2009. The study to re-stablish the amount and major compositions of manure from livestock. Suwon. Korea.
  20. Sorensen, A.H,. M. Winther-Nielsen, and B.K. Ahring. 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Appl. Microbiol. Biot. 34:823-827.
  21. Williams, A., M. Amat-Marco, and M.D. Collins. 1996. Pylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylm of gram-positive bacteria. Int. J. Syst. Evol. Micr. 46:195-199.
  22. Yoon, Y.M., H.C. Kim, J.S. Yoo, S.H. Kim, S.G. Homg, and C.H. Kim. 2011. The performance of anaerobic co-digester of swine slurry and food waste. Korean J. Soil Sci. Fert. 44(1):104-111. https://doi.org/10.7745/KJSSF.2011.44.1.104
  23. Yoon, Y.M., C.H. Kim, Y.J. Kim, and H.T. Park, 2009a. The economical evaluation of biogas production facility of pig waste. Kor. J. Agr. Manag. Pol. 36(1):137-157.
  24. Yoon, Y.M., Y.J. Kim, and C.H. Kim. 2009b. The evaluation of economical efficiency to composting and liquefying process of biomass discharged in pig breeding. Agr. Econ. 31(6):39-62.

Cited by

  1. Composting of Pig Manure Affected by Mixed Ratio of Sawdust and Rice Hull vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1032
  2. The Bioenergy Conversion Characteristics of Feedlot Manure Discharging from Beef Cattle Barn vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.697
  3. Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential with Pig Slurry vol.45, pp.6, 2012, https://doi.org/10.7745/KJSSF.2012.45.6.1049