• Title/Summary/Keyword: 바이러스제거

Search Result 129, Processing Time 0.027 seconds

Virus Inactivation during the Manufacture of a Collagen Type I from Bovine Hides (소 가죽 유래 Type I Collagen 생산 공정에서 바이러스 불활화)

  • Bae, Jung Eun;Kim, Chan Kyung;Kim, Sungpo;Yang, Eun Kyung;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.314-318
    • /
    • 2012
  • Most types of collagen used for biomedical applications, such as cell therapy and tissue engineering, are derived from animal tissues. Therefore, special precautions must be taken during the production of these proteins in order to assure against the possibility of the products transmitting infectious diseases to the recipients. The ability to remove and/or inactivate known and potential viral contaminants during the manufacturing process is an ever-increasingly important parameter in assessing the safety of biomedical products. The purpose of this study was to evaluate the efficacies of the 70% ethanol treatment and pepsin treatment at pH 2.0 for the inactivation of bovine viruses during the manufacture of collagen type I from bovine hides. A variety of experimental model viruses for bovine viruses including bovine herpes virus (BHV), bovine viral diarrhea virus (BVDV), bovine parainfluenza 3 virus (BPIV-3), and bovine parvovirus (BPV), were chosen for the evaluation of viral inactivation efficacy. BHV, BVDV, BPIV-3, and BPV were effectively inactivated to undetectable levels within 1 h of 70% ethanol treatment for 24 h, with log reduction factors of ${\geq}5.58$, ${\geq}5.32$, ${\geq}5.11$, and ${\geq}3.42$, respectively. BHV, BVDV, BPIV-3, and BPV were also effectively inactivated to undetectable levels within 5 days of pepsin treatment for 14 days, with the log reduction factors of ${\geq}7.08$, ${\geq}6.60$, ${\geq}5.60$, and ${\geq}3.59$, respectively. The cumulative virus reduction factors of BHV, BVDV, BPIV-3, and BPV were ${\geq}12.66$, ${\geq}11.92$, ${\geq}10.71$, and ${\geq}7.01$. These results indicate that the production process for collagen type I from bovine hides has a sufficient virus-reducing capacity to achieve a high margin of virus safety.

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Reduction Effect of Various Air Purifiers on Airborne Microorganism for Preventing Air Infected Animal Disease (공기감염성 가축질병 예방을 위한 공기청정기 유형에 따른 부유 미생물의 제거 효과)

  • Park, Chan-Jeong;Kim, Hyeon-Tae;Kim, Ki-Youn
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.89-96
    • /
    • 2011
  • The objective of this study is to evaluate reduction efficiency of various air purifiers on airborne microorganism causing air infected animal disease according to sample collection method. Collection efficiencies of MS2 virus and Pseudomonas fluorescens by biosampler was significantly higher than those by button sampler (p<0.05). Regardless of types of air purifier and sample collection method, temporal reduction efficiencies of MS2 virus and P. fluorescens compared to initial background concentration were >50% and >45% on 5 minutes, >70% and >50% on 15 minutes, >80% and >70% on 30 minutes and >90% and >75% on 60 minutes after operating air purifier, respectively. The air purifier of ionizer type showed the highest reduction efficiency on MS2 virus followed by air purifier of electronic precipitation, water filter and dry filter while the reduction efficiency of air purifier on P. fluorescens was highest in the electronic precipitation type followed by ionizer type, dry filter type and water filter type (p<0.05). Based on the results obtained from this study, temporal reduction efficiency of air purifier on MS2 virus was relatively higher than P. fluorescens.

Epiphora by Non-viral Squamous Papilloma of the Conjunctiva in a Dog (개 결막의 비바이러스성 편평세포 유두종에 의한 유루증 증례)

  • Kim, Jury;Choi, Ul Soo;Plummer, Caryn E.;Brooks, Dennis E.;Kim, Min-Su
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.319-321
    • /
    • 2014
  • A 12-year-old mixed breed male dog was referred to Chonbuk National University Animal Medical Center with unilateral left epiphora. Magnified ophthalmic examination revealed a very small tissue mass on the palpebral conjunctiva of the left eye. The mass was surgically removed and microscopic examination confirmed moderate papillary hyperplasia of the squamous epithelium without viral cytopathic effects. Based on the histology, the mass was diagnosed as a non-viral squamous papilloma. After removal of the mass, the epiphora was completely solved. This case report describes the non-viral squamous papilloma arising from the conjunctiva in a dog with epiphora.

Linux Based Real Time Network Intrusion Detection, Protection, Management and Fault Tolerance Security System (리눅스 기반 실시간 네트워크 칩입탐지대응관리 및 감내시스템)

  • Lee, Mike Myung-Ok;Lee, Eun-Mi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05c
    • /
    • pp.2113-2116
    • /
    • 2003
  • 이 논문에서는 리눅스 기반VDPM(Virus Detection Protection Management)시스템을 제안하고 개발한 응용SW로 감지, 차단 및 관리 방법을 제시한다. 제안된 LVPM시스템은 첫째특정탐색 및 전체탐색 알고리듬에 의하여 개발된 VDPM시스템은 신종 바이러스까지 탐지하는 모든 종류의 바이러스 탐지(VDPM_hawkeye) 모듈, Virus첵크하는 감시 및 Virus첵크후 친정, 제거하는 방지(VDPM_medic)모듈, DB를 update하는 기능을 가지는 관리(VDPM_manager)모듈과 원격 DB관리 및 Virus결과 보고 기능 (VDPM_reporter) 모듈로 되어 있으며 지능적인 Virus방지 시스템, 둘째 네트워크 패킷을 분석하여 네트워크를 통한 침 바이러스 탐지 및 대응 시스템과 셋째 네트워크 패킷을 분석하여 네트워치를 통한 네트워크형 악성 소프트웨어 대응 시스템을 포함한 바이러스 보호 통합 시스템을 구현하였다. 더불어 호스트와 네트웍기반의 통합적인 IDS가 방화벽(Firewall)시스템과 연동하여 IDS 단독 차단이 불가능한 공격을 차단하는 소프트웨어 시스템을 개발하는 것이며 관리자가 사용하기 쉬운 GUI환경으로 구현하였고 대규모 분산 네트워크 환경에서 효율적인 리눅스기반 침입탐지방지관리 솔루션을 제시한다.

  • PDF

Measles Viral Infection in PD-1 Gene Knockout Mice (PD-1 유전자 제거 마우스에서 홍역바이러스 감염)

  • Chun, Jin Kyong;Kim, Kyu Yeun;Hur, Ji Ae;Kang, Dong Won;Kim, Ki Hwan;Kim, Dong Soo
    • Pediatric Infection and Vaccine
    • /
    • v.20 no.3
    • /
    • pp.123-130
    • /
    • 2013
  • Purpose: Subacute sclerosing panencephalitis (SSPE) is a neurodegerative disease due to persistent measles virus infection. We investigated the role of programmed death-1 (PD-1) molecule which is related with chronic viral infection in developing SSPE in mouse. Methods: We adopt the $PD-1^{-/-}$, $PD-1^{-/+}$, and wild type BALB/c 3 week old mice to make an animal model of SSPE by injecting measles virus (SSPE strain) intraventricularly. Three months after infusion of virus, the mice were sacrificed and examined if the typical pathologic lesions had been progressed. The sera were collected from each group of mice and the serum level of IL-21 was measured with ELISA kit. Results: The necrotic lesions on white matter and gliosis were found in focal areas in wild type BALB/c. The extent of lesion was smaller in heterotype BALB/c. Scanty lesions were found in $PD-1^{-/-}$ mice. The sera level of IL-21 was not elevated in all three groups. Conclusion: Our data suggest that the PD-1 molecule may play a role in persistent viral infection.

  • PDF

Co-Infection of the Rat Central Nervous System with Genetically Engineered Strains of Pseudorabies Virus (유전자 조작된 Pseudorabies 바이러스에 의한 흰쥐 중추신경계의 이중감염)

  • Kim Jin-Sang;Kwon Young-Shil
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.2
    • /
    • pp.81-92
    • /
    • 1999
  • 중추신경계의 미주신경동쪽핵(DMV)내 유사핵분열후 신경세포로 외래 유전자를 전달하는 매개체로서 pseudorabies 바이러스(PRV)의 유전자 조작기술은 흰쥐의 결장내로 PRV를 주입시킨 후 복잡한 신경로 추적에 관한 연구에서 하나의 바이러스에 의해 얻어지는 것보다 더욱 유용한 결과산출이 가능하게 하였다. 본 연구에서는 흰쥐의 생체내 실험모델로 하나의 바이러스 또는 이중 바이러스 주입에 PRV의 유전자 조작된 2종 바이러스를 사용하였다. 이 2종의 바이러스는 PRV의 Bartha 종에서 유래되었지만 면역조직화학적으로 검출할 수 있는 동일한 유전산물을 산출할 수 있도록 구성되었다. PRV-BaBlu는 PRV 게놈의 Us 구역 중 gC 자리에 lacZ 유전자를 삽입하여 산출되었는데 $\beta-galactosidase$ 발현은 이 바이러스에 감염된 신경원의 독특한 표시자로 나타났다. PRV-D는 2가지 단계에 의해 조성되었는데 첫째, PRV-Bartha의 Us 구역의 일부 유전자를 제거하고, 야생형인 PRV-Be DNA로 복구시켰는데 이로써 PRV-D는 PRV-Bartha 또는 PRV-Bablu에 존재하고 있지 않는 외피 당단백질인 gE와 gI를 지니게 되었다. 본 연구의 결과는 다음과 같았다. 첫째, PRV-D의 개별적 접종에 의해 얻어진 감염은 PRV-BaBlu에 의한 동일 신경회로의 감염보다 유의하게 빨랐다. 둘째, 유전자 조작된 PRV의 변이종은 변이종 상호간 및 부모 바이러스와 상이하였다. PRV-D는 PRV-Bartha 또는 PRV-BaBlu보다 감염독성이 더 강했고, PRV-BaBlu는 PRV-Bartha보다 감염독성이 약했다. 셋째, 결장을 지배하는 미주신경동쪽핵내 신경원은 변이종 바이러스들을 동시에 접종하였을 경우 이중감염을 나타내었다.

  • PDF

Process development of a virally-safe dental xenograft material from porcine bones (바이러스 안전성이 보증된 돼지유래 골 이식재 제조 공정 개발)

  • Kim, Dong-Myong;Kang, Ho-Chang;Cha, Hyung-Joon;Bae, Jung Eun;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.140-147
    • /
    • 2016
  • A process for manufacturing virally-safe porcine bone hydroxyapatite (HA) has been developed to serve as advanced xenograft material for dental applications. Porcine bone pieces were defatted with successive treatments of 30% hydrogen peroxide and 80% ethyl alcohol. The defatted porcine bone pieces were heat-treated in an oxygen atmosphere box furnace at $1,300^{\circ}C$ to remove collagen and organic compounds. The bone pieces were ground with a grinder and then the bone powder was sterilized by gamma irradiation. Morphological characteristics such as SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images of the resulting porcine bone HA (THE Graft$^{(R)}$) were similar to those of a commercial bovine bone HA (Bio-Oss$^{(R)}$). In order to evaluate the efficacy of $1,300^{\circ}C$ heat treatment and gamma irradiation at a dose of 25 kGy for the inactivation of porcine viruses during the manufacture of porcine bone HA, a variety of experimental porcine viruses including transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), and porcine parvovirus (PPV) were chosen. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the $1,300^{\circ}C$ heat treatment. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.81$$ for PRV, $${\geq_-}6.28$$ for PRoV, and $${\geq_-}5.21$$ for PPV. Gamma irradiation was also very effective at inactivating the viruses. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the gamma irradiation. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.87$$ for PRV, $${\geq_-}6.05$$ for PRoV, and $${\geq_-}4.89$$ for PPV. The cumulative log reduction factors achieved using the two different virus inactivation processes were $${\geq_-}9.30$$ for TGEV, $${\geq_-}11.68$$ for PRV, $${\geq_-}12.33$$ for PRoV, and $${\geq_-}10.10$$ for PPV. These results indicate that the manufacturing process for porcine bone HA from porcine-bone material has sufficient virus-reducing capacity to achieve a high margin of virus safety.

Real-Time PCR for Validation of Minute Virus of Mice Safety during the Manufacture of Mammalian Cell Culture-Derived Biopharmaceuticals (세포배양 유래 생물의약품 생산 공정에서 Minute Virus of Mice 안전성 검증을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Cho, Hang-Mee;Kim, Hyun-Mi;Lee, Jung-Suk;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.12-20
    • /
    • 2008
  • Validation of viral safety is essential in ensuring the safety of mammalian cell culture-derived biopharmaceuticals, because numerous adventitious viruses have been contaminated during the manufacture of the products. Mammalian cells are highly susceptible to minute virus of mice(MVM), and there are several reports of MVM contamination during the manufacture of biopharmaceuticals. In order to establish the validation system for the MVM safety, a real-time PCR method was developed for quantitative detection of MVM in cell lines, raw materials, manufacturing processes, and final products as well as MVM clearance validation. Specific primers for amplification of MVM DNA was selected, and MVM DNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be $6{\times}10^{-2}TCID_{50}/mL$. The real-time PCR method was proven to be reproducible and very specific to MVM. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with MVM. MVM DNA could be Quantified in CHO cell as well as culture supernatant. When the real-time PCR assay was applied to the validation of virus removal during a virus filtration process, the result was similar to that of virus infectivity assay. Therefore, it was concluded that this rapid, specific, sensitive, and robust assay could replace infectivity assay for detection and clearance validation of MVM.