Browse > Article

Reduction Effect of Various Air Purifiers on Airborne Microorganism for Preventing Air Infected Animal Disease  

Park, Chan-Jeong (Department of Mechanical Engineering, Busan National University)
Kim, Hyeon-Tae (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Insti. of Agric. & Life Sci.))
Kim, Ki-Youn (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Insti. of Agric. & Life Sci.))
Publication Information
Journal of agriculture & life science / v.45, no.3, 2011 , pp. 89-96 More about this Journal
Abstract
The objective of this study is to evaluate reduction efficiency of various air purifiers on airborne microorganism causing air infected animal disease according to sample collection method. Collection efficiencies of MS2 virus and Pseudomonas fluorescens by biosampler was significantly higher than those by button sampler (p<0.05). Regardless of types of air purifier and sample collection method, temporal reduction efficiencies of MS2 virus and P. fluorescens compared to initial background concentration were >50% and >45% on 5 minutes, >70% and >50% on 15 minutes, >80% and >70% on 30 minutes and >90% and >75% on 60 minutes after operating air purifier, respectively. The air purifier of ionizer type showed the highest reduction efficiency on MS2 virus followed by air purifier of electronic precipitation, water filter and dry filter while the reduction efficiency of air purifier on P. fluorescens was highest in the electronic precipitation type followed by ionizer type, dry filter type and water filter type (p<0.05). Based on the results obtained from this study, temporal reduction efficiency of air purifier on MS2 virus was relatively higher than P. fluorescens.
Keywords
Air purifier; MS2 virus; Pseudomonas fluorescens; Reduction efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska. 2003. Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. J. Aerosol Sci. 34: 1711-1727.   DOI   ScienceOn
2 Chang, C. W., H. Chung, C. F. Huang, and H. J. J. Su. 2001. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses. Ann. Occupational Hygiene 45: 457-465.   DOI
3 Demmers, T. G. M, C. M. Wathes, P. A. Richards, N. Teer, L. L. Taylor, V. Bland, J. Goodman, D. Armstrong, D. Chennells, S. H. Done, and J. Hartung. 2003. A facility for controlled exposure of pigs to airborne dusts and gases. Biosyst. Enginee. 84: 217- 230.   DOI   ScienceOn
4 Grinshpun, S. A., A. Adhikari, T. Honda, K. Y. Kim, M. Toivola, K. S. R. Rao, and T. Reponen. 2007. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ. Sci. Techn. 410: 606- 612.
5 Grinshpun, S. A., K. Willeke, V. Ulevicius, J. Donnelly, X. Lin, and G. Mainelis. 1996. Collection of airborne microorganisms: advantages and disadvantages of different methods. J. Aerosol Sci. 27: 5247-5248.
6 Hayes, E. T., T. P. Curran, and V. A. Dodd. 2006. Odour and ammonia emissions from intensive pig units in Ireland. Biores. Techn. 97: 940-948.   DOI   ScienceOn
7 Hospido, A. and U. Sonesson. 2005. The environmental impact of mastitis: a case study of dairy herds. Sci. Total Environ. 343: 71-82.   DOI
8 Kim, C. H. 2002. Types and characteristics of air purifier. Korean J. Consumer Soc. 11: 24-27.
9 Kim, K. Y., J. B. Park, G. Y. Jang, C. N. Kim, and K. J. Lee. 2007. Assessment of bioaerosols in the public buildings of Korea. Indoor and Built Environ. 16: 465-471.   DOI   ScienceOn
10 Lee, T. H., S. A. Grinshpun, K. Y. Kim, Y. Iossifova, A. Adhikari, and T. Reponen. 2006. Relationship between indoor and outdoor airborne fungal spores, pollen, and 1,3-$\beta$-D-glucan in homes without visible mold growth. Aerobiol. 22: 227-236.   DOI   ScienceOn
11 Lin, C. Y. and C. S. Li. 2002. Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci. Techn. 36: 474-478.   DOI   ScienceOn
12 Lin, C. Y. and C. S. Li. 2003. Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci. Techn. 37: 939-946.   DOI   ScienceOn
13 Mainelis, G., D. Berry, H. R. An, M. S. Yao, K. Devoe, D. E. Fennell, and R. Jaeger. 2005. Design and performance of a single-pass bubbling bioaerosol generator. Atmospheric Environ.t 39: 3521-3533.   DOI   ScienceOn
14 Maness, P. C., S.. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby. 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094-4098.
15 Mayer, D., J. Reiczigel, and F. Rubel. 2008. A lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus. Atmospheric Environ. 42: 466-479.   DOI   ScienceOn
16 Muilenberg, M. L. 1989. Aeroallergen assessment by microscopy and culture. Immunological Allergy Clinics North America 9: 245-268.
17 Thorne, P. S., M. S. Niekhaefer, P. Whitten, and K. J. Donham. 1992. Comparison of bioaerosol sampling methods in barns housing swine. Appl. Environ. Microbiol. 58: 2543-2551.
18 Tseng, C. C. and C. S. Li. 2005. Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosol Sci. Techn. 39: 1136-1142.   DOI   ScienceOn
19 Willeke, K., S. A. Grinshpun, V. Ulevicius, J. Terzieva, J. Donnelly, S. Stewart, and A. Juozaitis. 1995. Microbial stress, bounce and re-aerosolization in bioaerosol samplers. J. Aerosol Sci. 26: 5883-5884.
20 Wang, Z., T. Reponen, S. A. Grinshpun, R. L. Gorny, and K. Willeke. 2001. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J. Aerosol Sci. 32: 661-674.   DOI   ScienceOn