Reduction Effect of Various Air Purifiers on Airborne Microorganism for Preventing Air Infected Animal Disease

공기감염성 가축질병 예방을 위한 공기청정기 유형에 따른 부유 미생물의 제거 효과

  • Park, Chan-Jeong (Department of Mechanical Engineering, Busan National University) ;
  • Kim, Hyeon-Tae (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Insti. of Agric. & Life Sci.)) ;
  • Kim, Ki-Youn (Dept. of Bio-Industrial Machinery Engineering, Gyeongsang National Univ. (Insti. of Agric. & Life Sci.))
  • 박찬정 (부산대학교 기계공학과) ;
  • 김현태 (경상대학교 생물산업기계공학과(농업생명과학연구원)) ;
  • 김기연 (경상대학교 생물산업기계공학과(농업생명과학연구원))
  • Received : 2011.05.12
  • Accepted : 2011.06.23
  • Published : 2011.06.30

Abstract

The objective of this study is to evaluate reduction efficiency of various air purifiers on airborne microorganism causing air infected animal disease according to sample collection method. Collection efficiencies of MS2 virus and Pseudomonas fluorescens by biosampler was significantly higher than those by button sampler (p<0.05). Regardless of types of air purifier and sample collection method, temporal reduction efficiencies of MS2 virus and P. fluorescens compared to initial background concentration were >50% and >45% on 5 minutes, >70% and >50% on 15 minutes, >80% and >70% on 30 minutes and >90% and >75% on 60 minutes after operating air purifier, respectively. The air purifier of ionizer type showed the highest reduction efficiency on MS2 virus followed by air purifier of electronic precipitation, water filter and dry filter while the reduction efficiency of air purifier on P. fluorescens was highest in the electronic precipitation type followed by ionizer type, dry filter type and water filter type (p<0.05). Based on the results obtained from this study, temporal reduction efficiency of air purifier on MS2 virus was relatively higher than P. fluorescens.

본 연구의 목적은 공기감염성 가축질병 유발의 주요 인자인 부유 세균 및 바이러스 등의 생물학상 인자들에 대한 유형별 공기청정기의 제균 효과를 비교 평가하는 데 있다. 시료 채취 장비에 대한 포집 성능 평가에서는 MS2 바이러스와 Pseudomonas fluorescens 모두 Button sampler보다는 Biosampler에 의한 채취 효율이 유의하게 높았다 (p<0.05). 공기청정기 유형 및 시료채취 방법에 관계없이 MS2 바이러스의 경우 초기 농도 대비 가동 후 5분에 50% 이상, 15분에 70% 이상, 30분에 80% 이상, 그리고 마지막 측정 시점인 60분에는 90% 이상의 제거 효율을 보이는 것으로 나타났다. P. fluorescens 세균의 경우 초기 농도 대비 가동 후 5분에 45% 이상, 15분에 50% 이상, 30분에 70% 이상, 그리고 마지막 측정 시점인 60분에는 75% 이상의 제거 효율을 보이는 것으로 나타났다. 유형별 공기청정기의 상대적 제균 효율을 비교해 보면 MS2 바이러스의 경우 이온 발생 방식>전기 집진 방식>습식 방식>건조 방식, P. fluorescens 세균의 경우 전기 집진 방식>이온 발생 방식>건조 방식>습식 방식의 순서로 조사되었다.

Keywords

References

  1. Agranovski, V., Z. Ristovski, M. Hargreaves, P. J. Blackall, and L. Morawska. 2003. Performance evaluation of the UVAPS: influence of physiological age of airborne bacteria and bacterial stress. J. Aerosol Sci. 34: 1711-1727. https://doi.org/10.1016/S0021-8502(03)00191-5
  2. Chang, C. W., H. Chung, C. F. Huang, and H. J. J. Su. 2001. Exposure assessment to airborne endotoxin, dust, ammonia, hydrogen sulfide and carbon dioxide in open style swine houses. Ann. Occupational Hygiene 45: 457-465. https://doi.org/10.1016/S0003-4878(00)00081-8
  3. Demmers, T. G. M, C. M. Wathes, P. A. Richards, N. Teer, L. L. Taylor, V. Bland, J. Goodman, D. Armstrong, D. Chennells, S. H. Done, and J. Hartung. 2003. A facility for controlled exposure of pigs to airborne dusts and gases. Biosyst. Enginee. 84: 217- 230. https://doi.org/10.1016/S1537-5110(02)00243-X
  4. Grinshpun, S. A., A. Adhikari, T. Honda, K. Y. Kim, M. Toivola, K. S. R. Rao, and T. Reponen. 2007. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation. Environ. Sci. Techn. 410: 606- 612.
  5. Grinshpun, S. A., K. Willeke, V. Ulevicius, J. Donnelly, X. Lin, and G. Mainelis. 1996. Collection of airborne microorganisms: advantages and disadvantages of different methods. J. Aerosol Sci. 27: 5247-5248.
  6. Hayes, E. T., T. P. Curran, and V. A. Dodd. 2006. Odour and ammonia emissions from intensive pig units in Ireland. Biores. Techn. 97: 940-948. https://doi.org/10.1016/j.biortech.2005.04.023
  7. Hospido, A. and U. Sonesson. 2005. The environmental impact of mastitis: a case study of dairy herds. Sci. Total Environ. 343: 71-82. https://doi.org/10.1016/j.scitotenv.2004.10.006
  8. Kim, C. H. 2002. Types and characteristics of air purifier. Korean J. Consumer Soc. 11: 24-27.
  9. Kim, K. Y., J. B. Park, G. Y. Jang, C. N. Kim, and K. J. Lee. 2007. Assessment of bioaerosols in the public buildings of Korea. Indoor and Built Environ. 16: 465-471. https://doi.org/10.1177/1420326X07082534
  10. Lee, T. H., S. A. Grinshpun, K. Y. Kim, Y. Iossifova, A. Adhikari, and T. Reponen. 2006. Relationship between indoor and outdoor airborne fungal spores, pollen, and 1,3-$\beta$-D-glucan in homes without visible mold growth. Aerobiol. 22: 227-236. https://doi.org/10.1007/s10453-006-9034-y
  11. Lin, C. Y. and C. S. Li. 2002. Control effectiveness of ultraviolet germicidal irradiation on bioaerosols. Aerosol Sci. Techn. 36: 474-478. https://doi.org/10.1080/027868202753571296
  12. Lin, C. Y. and C. S. Li. 2003. Inactivation of microorganisms on the photocatalytic surfaces in air. Aerosol Sci. Techn. 37: 939-946. https://doi.org/10.1080/02786820300900
  13. Mainelis, G., D. Berry, H. R. An, M. S. Yao, K. Devoe, D. E. Fennell, and R. Jaeger. 2005. Design and performance of a single-pass bubbling bioaerosol generator. Atmospheric Environ.t 39: 3521-3533. https://doi.org/10.1016/j.atmosenv.2005.02.043
  14. Maness, P. C., S.. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby. 1999. Bactericidal activity of photocatalytic TiO2 reaction: toward an understanding of its killing mechanism. Appl. Environ. Microbiol. 65: 4094-4098.
  15. Mayer, D., J. Reiczigel, and F. Rubel. 2008. A lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus. Atmospheric Environ. 42: 466-479. https://doi.org/10.1016/j.atmosenv.2007.09.069
  16. Muilenberg, M. L. 1989. Aeroallergen assessment by microscopy and culture. Immunological Allergy Clinics North America 9: 245-268.
  17. Thorne, P. S., M. S. Niekhaefer, P. Whitten, and K. J. Donham. 1992. Comparison of bioaerosol sampling methods in barns housing swine. Appl. Environ. Microbiol. 58: 2543-2551.
  18. Tseng, C. C. and C. S. Li. 2005. Inactivation of virus-containing aerosols by ultraviolet germicidal irradiation. Aerosol Sci. Techn. 39: 1136-1142. https://doi.org/10.1080/02786820500428575
  19. Wang, Z., T. Reponen, S. A. Grinshpun, R. L. Gorny, and K. Willeke. 2001. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection. J. Aerosol Sci. 32: 661-674. https://doi.org/10.1016/S0021-8502(00)00108-7
  20. Willeke, K., S. A. Grinshpun, V. Ulevicius, J. Terzieva, J. Donnelly, S. Stewart, and A. Juozaitis. 1995. Microbial stress, bounce and re-aerosolization in bioaerosol samplers. J. Aerosol Sci. 26: 5883-5884.