• Title/Summary/Keyword: 바나듐 전지

Search Result 87, Processing Time 0.024 seconds

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures (이산화바나듐 나노구조물의 성장에서 그래핀 기판의 영향에 관한 연구)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.95-100
    • /
    • 2018
  • The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.

Research Review of the All Vanadium Redox-flow Battery for Large Scale Power Storage (대용량 전력저장용 바나듐 레독스-흐름 전지 연구동향)

  • Choi, Ho-Sang;Kim, Jae-Chul;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.107-117
    • /
    • 2011
  • The all vanadium redox-flow battery (V-RFB) is investigating as one of large-scale power storage systems. Particularly, V-RFB is being investigated as one of the power storage systems for the load leveling and output power equalization of the power systems using renewable energy such as solar and wind. In this paper, it was explained for the principle and construction, recent research review, economy, element technology in V-RFB.

Surface Treatment with Alkali Solution of Carbon Felt for Vanadium Redox Flow Battery (바나듐레독스흐름전지용 카본펠트전극의 알칼리용액을 이용한 표면개질)

  • KIM, SUNHOE;LEE, KEON JOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.372-377
    • /
    • 2016
  • The carbon felt used as the electrode of vanadium redox flow battery (VRFB) requires imprived electrochemical activity for better battery performance and efficiencies. Many efforts have been tried to improve electrochemical activity of the carbon felt as electrodes. In this study the alkali solution, KOH, is applied on surface treatment of the carbon felt electrode. The carbon felts were treated with KOH under room temperature and $80^{\circ}C$. The isopropyl alcohol was applied to improve wettability of the carbon felt during KOH treatment. The KOH treated carbon felt was analyzed by using the X-ray photoelectron spectroscopy (XPS). The XPS analysis of carbon felt electrode revealed on increase in the overall surface oxygen content of the carbon felts after KOH treatment. Also, cyclic voltametry tests showed electrochemical characteristics enhancement of the carbon felt.

Development of Activated Graphite Felt Electrode Using Ozone and Ammonia Consecutive Post Treatments for Vanadium Redox Flow Batteries (오존, 암모니아 순차적 처리를 통한 바나듐 레독스 흐름 전지용 활성화 카본 펠트 전극 개발)

  • CHOI, HANSOL;KIM, HANSUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • A carbon felt electrode was prepared using ozone and ammonia sequential treatment and applied as an electrode for a vanadium redox flow battery (VRFB). The physical and electrochemical analyses demonstrate that the oxygen groups facilitate nitrogen doping in the carbon felt. Carbon felt (J5O3+NH3), which was subjected to ammonia heat treatment after ozone treatment, showed higher oxygen and nitrogen contents than carbon felt (J5NH3+O3), which was subjected to ammonia heat treatment first and then ozone treatment. From the charging/discharging of VRFB, the J5O3+NH3 carbon felt electrode showed 14.4 Ah/L discharge capacity at a current density of 150 mA /cm2, which was 15% and 33% higher than that of J5NH3+O3 and non-activated carbon felt (J5), respectively. These results show that ozone and ammonia sequential treatment is an effective carbon felt activation method to increase the performance of the vanadium redox flow battery.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery (수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발)

  • Han, Manho;Kim, Hansung
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this study, boron - doped carbon was prepared by reducing carbon dioxide ($CO_2$) at high temperature by using sodium borohydride ($NaBH_4$). The boron - doped carbon was coated on carbon felt and applied as an electrode for a vanadium redox battery cell. As a result of electrochemical performance evaluation, reversibility of carbon felt coated with boron doped carbon compared to pure carbon felt was improved by about 20% and charge transfer resistance was reduced by 60%. In the charge / discharge results, energy density and energy efficiency were improved by 21% and 12.4%, respectively. These results show that carbon produced by reduction of $CO_2$ can be used as electrode material for redox flow battery.

Study on the Electrolyte Added Chlorosulfuric Acid for All-vanadium Redox Flow Battery (바나듐 레독스 흐름 전지용 전해액으로 클로로황산 첨가에 관한 연구)

  • OH, YONG-HWAN;LEE, GEON-WOO;RYU, CHEOL-HWI;HWANG, GAB-JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.169-175
    • /
    • 2016
  • The electrolyte added the chlorosulfuric acid ($HSO_3Cl$) as an additive was tested for the electrolyte in all-vanadium redox flow battery (VRFB) to increase the thermal stability of electrolyte. The electrolyte property was measured by the CV (cyclic voltammetry) method. The maximum value of a voltage and current density in the electrolyte added $HSO_3Cl$ was higher than that in the electrolyte non-added $HSO_3Cl$. The thermal stability of the pentavalent vanadium ion solution, which was tested at $40^{\circ}C$, increased by adding $HSO_3Cl$. The performances of VRFB using the electrolyte added and non-added $HSO_3Cl$ were measured during 30 cycles of charge-discharge at the current density of $60mA/cm^2$. An average energy efficiency of the VRFB was 72.5%, 82.4%, and 81.6% for the electrolyte non-added $HSO_3Cl$, added 0.5 mol of $HSO_3Cl$, and added 1.0 mol of $HSO_3Cl$, respectively. VRFB using the electrolyte added $HSO_3Cl$ was showed the higher performance than that using the electrolyte non-added $HSO_3Cl$.

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.