Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2018.8.5.095

A Study on the Effect of Graphene Substrate for Growth of Vanadium Dioxide Nanostructures  

Kim, Ki-Chul (Department of Advanced Chemical Engineering, Mokwon University)
Publication Information
Journal of Convergence for Information Technology / v.8, no.5, 2018 , pp. 95-100 More about this Journal
Abstract
The metal oxide/graphene nanocomposites are promising functional materials for high capacitive electrode material of secondary batteries, and high sensitive material of high performance gas sensors. In this study, vanadium dioxide($VO_2$) nanostructrures were grown on CVD graphene which was synthesized on Cu foil by thermal CVD, and exfoliated graphene which was exfoliated from highly oriented pyrolytic graphite(HOPG) using a vapor transport method. As results, $VO_2$ nanostructures on CVD graphene were grown preferential growth on abundant functional groups of graphene grain boundaries. The functional groups are served to nucleation site of $VO_2$ nanostructures. On the other hand, 2D & 3D $VO_2$ nanostructures were grown on exfoliated graphene due to uniformly distributed functional groups on exfoliated graphene surface. The characteristics of morphology controlled growth of $VO_2$/graphene nanocomposites would be applied to fabrication process for high capacitive electrode materials of secondary batteries, and high sensitive materials of gas sensors.
Keywords
Metal Oxide; Graphene; Hybrid Nanomaterials; Vapor Transport Method; Vanadium Dioxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 B. S. Guiton, Q. Gu, A. L. Prieo, M. S. Gudiksen & H. Park. (2005). Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections. Journal of the American Chemical Society, 127, 498-499. DOI : 10.1021/ja045976g   DOI
2 X. Li, et al. (2009). Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 324, 1312-1314. DOI : 10.1126/science.1171245   DOI
3 J. H. Lee, et al. (2014). Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 344, 286-289. DOI : 10.1126/science.1252268   DOI
4 W. Wang, B. Jiang, L. Hu. Z. Lin, J. Hou & S. Jiao. (2014). Single Crystalline $VO_2$ Nanosheets: A Cathode Material for Sodium-ion Batteries with High Rate Cycling Performance. Journal of Power Sources, 250, 181-187. DOI : 10.1016/j.jpowsour.2013.11.016   DOI
5 S. A. Oh & K. C. Kim. (2016). Growth of Two-dimensional Nanostructured $VO_2$ on Graphene Nanosheets. Journal of the Korea Academia-Industrial cooperation Society, 17(9), 502-507. DOI : 10.5762/KAIS.2016.17.9.502   DOI
6 H. Wang, et al. (2012). Controllable Synthesis of Submilimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation. Journal of the American Chemical Society, 134, 3627-3630. DOI : 10.1021/ja2105976   DOI
7 Z. Yan, et al. (2012). Toward the Synthesis of Wafer-Scale Single-Crystal Graphene on Copper Foils. ACS Nano, 6(10), 9110-9117. DOI : 10.1021/nn303352k   DOI
8 G. I. Petrov & V. V. Yakovlev. (2002). Raman Microscopy Analysis of Phase Transformation Mechanism in Vanadium Dioxide. Applied Physics Letters, 81, 1023-1025. DOI : 10.1063/1.1496506   DOI
9 G. M. Thorat, H. S. Jadhav, W. J. Chung & J. G. Seo. (2018). Collective use of Deep Eutectic Solvent for One-pot Synthesis of Ternary Sn/$SnO_2@C$ Electrode for Supercapacitor. Journal of Alloys and Compounds, 732, 694-704. DOI : 10.1016/j.jallcom.2017.10.176   DOI
10 X. Wang, et al. (2012). N-Doped Graphene-$SnO_2$ Sandwich Paper for High-Performance Lithium-Ion Batteries. Advanced Functional Materials 22, 2682-2690. DOI : 10.1002/adfm.201103110   DOI
11 K. S. Kim, et al. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457, 706-710. DOI : 10.1038/nature07719   DOI
12 E. Strelcov, Y. Lilach & A. Kolmakov. (2009). Gas Sensor Baded on Metal-Insulator Transition in $VO_2$ Nanowire Thermistor. Nano Letters, 9(6), 2322-2326. DOI : 10.1021/nl900676n   DOI
13 G. H. Jeong, S. Baek, S. Lee & S. W. Kim (2016). Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials. Chemistry an Asian Journal, 11, 949-964. DOI : 10.1002/asia.2015010172   DOI
14 Y. Deng, C. Fang & G. Chen. (2016). The Development of $SnO_2$/graphene Nanocomposites as Anode Materials for High Performance Lithium Ion Batteries: A review. Journal of Power Sources, 304, 81-101. DOI : 10.1126/science.1252268   DOI
15 Y. Yang, et al. (2018). Phosphorized $SnO_2$/graphene Heterostructures for Highly Reversible Lithium-ion Storage with Enhanced Pseudocapacitance. Journal of Materials Chemistry A, 6, 3479-3487. DOI : 10.1039/c7ta10435a   DOI
16 K. S. Novoselov, et al. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. DOI : 10.1126/science.1102896   DOI
17 J. S. Choi, et al. (2016). Facile Fabrication of Properties-controllable Graphene Sheet. Scientific Reports, 6, 24525. DOI : 10.1038/srep24525   DOI