• Title/Summary/Keyword: 밀링방법

Search Result 126, Processing Time 0.023 seconds

Marginal and internal fit of interim crowns fabricated with 3D printing and milling method (3D 프린팅 및 밀링 방법으로 제작된 임시 보철물 적합도 비교 분석)

  • Son, Young-Tak;Son, KeunBaDa;Lee, Kyu-Bok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.254-261
    • /
    • 2020
  • Purpose: The purpose of this study was to assess the marginal and internal fit of interim crowns fabricated by two different manufacturing method (subtractive manufacturing technology and additive manufacturing technology). Materials and Methods: Forty study models were fabricated with plasters by making an impression of a master model of the maxillary right first molar for ceramic crown. On each study model, interim crowns (n = 40) were fabricated using three types of 3D printers (Meg-printer 2; Megagen, Zenith U; Dentis, and Zenith D; Dentis) and one type milling machine (imes-icore 450i; imes-icore GmbH). The internal of the interim crowns were filled with silicon and fitted to the study model. Internal scan data was obtained using an intraoral scanner. The fit of interim crowns were evaluated in the margin, absolute margin, axial, cusp, and occlusal area by using the superimposition of 3D scan data (Geomagic control X; 3D Systems). The Kruskal-wallis test, Mann-Whitney U test and Bonferroni correction method were used to compare the results among groups (α = 0.05). Results: There was no significant difference in the absolute marginal discrepancy of the temporary crown manufactured by three 3D printers and one milling machine (P = 0.812). There was a significant difference between the milling machine and the 3D printer in the axial and occlusal area (P < 0.001). The temporary crown with the milling machine showed smaller axial gap and higher occlusal gap than 3D printer. Conclusion: Since the marginal fit of the temporary crown produced by three types of 3D printers were all with in clinically acceptable range (< 120 ㎛), it can be sufficiently used for the fabrication of the temporary crown.

Experimental Cutting Performance Evaluation of LGP using Vibration Assisted High Speed Shaping (도광판의 고속 진동절삭 특성에 관한 연구)

  • Kang, DongBae;Ahn, JungHwan;Son, SeongMin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1871-1878
    • /
    • 2014
  • PMMA (Polymethyle-methacrylate) optical components have recently been increasingly used as one of the important part of the high precision equipments. This research presents comparatively the surface preparation of light incident plane, LIP (Light Incident Plane) of LGP (Light Guide Panel) by end milling, high speed shaping, and vibration assisted high speed shaping. From several experiments, the results show that the surface quality was improved in high speed shaping and the vibration assisted HSS show not only decreasing waviness and breakage also raising the straightness property. For applying high speed shaping and vibration assisted HSS, an additional tool post was developed and experimentally used.

Determination of Cutting Parameters Considering Machining Safety in Milling Operation (밀링작업에서 가공 안전성을 고려한 가공조건의 결정)

  • Park, Byoung-Tae
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.116-121
    • /
    • 2006
  • In metal cutting processes, cutting conditions have an influence on reducing the production cost and deciding the quality of a final product. Process planners usually make modification to recommended cutting parameters obtained from machining data handbooks in order to satisfy requirements for individual operation. The modified cutting parameters also need to be examined for the safe machining. In this paper, a new operation planning system that allows the generation and check of modified cutting parameters is proposed for the milling process. A neural network methodology is introduced to identify mathematical models for generation of the modified cutting parameters, and several simplified rules and equations are presented for the check of the cutting parameters. Finally, the results are demonstrated with an example part.

A Study on Windmilling Start Performance of Micro Turbo-jet Engine (초소형 엔진의 윈드밀링 시동 성능 해석)

  • Kim, Wan-Jo;Park, Hwi-Seob;Roh, Tae-Seong;Choi, Dong-Whan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.15-23
    • /
    • 2008
  • A numerical method based on the prediction of total pressure loss of major components of the engine has been developed for prediction of the windmilling start performance of micro-turbojet engine. The start performance in on/off design region has been analysed by applying this method to predict windmilling start-able regions of the centrifugal-type engine. The results of this analysis have been validated by comparing with the test data. The effect of each design parameters on windmilling start performance has been analysed for the enlargement of start-able regions.

Design of A Small Thin Milling Cutter Considering Built-up Edge (구성인선을 고려한 소형 박판 밀링공구의 설계)

  • Jung, Kyoung-Deuk;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

Pigmentation of Diketopyrrolopyrroles Compound through Solvent Thermal-treatment and Its Property (용매 열처리법을 통한 diketopyrrolopyrroles 화합물의 안료화 및 그 특성)

  • Kim, Jae Hwan;Yang, Seok Won;Kim, Dae-Sung;Wu, Guan Zhu;Lee, Gun-Dae;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.357-362
    • /
    • 2014
  • To prepare diketopyrrolopyrrole (DPP) red 254 pigment with high shield and bright color, DPP red 254 crude previously synthesized was treated at various thermal-treat temperature, addition derivative and ball-milling. The properties of samples were measured by the means of FT-IR, UV-Vis spectroscopy, TEM, PSA, BET surface area analyzer, viscometer and spectrophotometer. It was found that solvent thermal-treatment of the sample prepared after ball-milling as nano-scale was very effective method in pigmentation process.

A Study on Vibration Characteristics and Machining Quality in Thin-wall Milling Process of Titanium Alloy (티타늄 합금의 얇은 벽 밀링가공에서 가공방법에 따른 진동특성 및 가공품질에 관한 연구)

  • Kim, Jong-Min;Koo, Joon-Young;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • Titanium alloy (Ti-6Al-4V) has excellent mechanical properties and high specific strength; therefore, it is widely used in aerospace, automobile, defense, engine parts, and bio fields. Particularly in the aerospace field, as it has a low specific gravity and rigidity, it is used for the purpose of increasing energy efficiency through weight reduction of parts, and most have a thin-walled structure. However, it is extremely difficult to machine thin-walled shapes owing to vibration and deformation. In the case of thin-walled structures, the cutting forces and vibrations rapidly increase depending on the cutting conditions, significantly affecting the surface integrity and tool life. In this study, machining experiments on thin-wall milling of a titanium alloy (Ti-6Al-4V) were conducted for each experimental condition with different axial depths of cut, radial depth of cut, and machining sequence. The machining characteristics were analyzed, and an effective machining method was derived by a comprehensive analysis of the machined surface conditions and cutting signals.

Synthesis and characterization of perovskite nano-sized (Pb, La)$TiO_3$ powder using mechano chemical process (기계화학공정을 이용한 Perovskite 구조의 (Pb, La)$TiO_3$ 나노 분말 합성 및 특성)

  • Lim, Bo-Ra-Mi;Yang, Jae-Kyo;Lee, Dong-Suk;Noh, Tae-Hyung;Seo, Jung-Hye;Lee, Youn-Seoung;Kim, Hee-Taik;Choa, Yong-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.200-204
    • /
    • 2008
  • Mechano Chemical Process (MCP) skips the calcinations steps at an intermediate temperature that is always required in the conventional solid-state reaction because forming phase from raw powder is activated by mechanical energy. In this study, we prepared (Pb, La)$TiO_3$ nanopowder with perovskite structure by only high energy MCP. Especially, the PLT nanopowder was synthesized without any thermal treatment using oxides, not salts as raw powder. This process is also very simple due to dry milling method, unnecessary to dry of powder. The oxide powder was milled up to 12 hr at intervals of an hour using MCP and the pure PLT phase of perovskite structure was formed after milling time of 3 hr. And the average particle size was 20 nm with narrow distribution after milling time of 3 hr from raw powder of several $\mu m$ with inhomogeneous distribution.

Synthesis of Mg2Ni by mechanical alloying and its electrochemical characteristics for Ni-MH secondary battery (Ni-MH 2차 전지용 Mg2Ni의 기계적 합금화법에 의한 제조 및 전기화학적 특성)

  • Moon, Hong-Gi;Choi, Seung-Jun;Kim, Dae-Hwan;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.4
    • /
    • pp.225-232
    • /
    • 1999
  • The $Mg_2Ni$ hydrogen storage alloys which have much higher theoretical discharge capacity than $AB_5$ and $AB_2$ type alloys were synthesized by mechanical alloying with some additives and subjected to the electrochemical measurements. Two different processes were employed to the synthesis of $Mg_2Ni$ alloys with using the high energy ball mill SPEX 8000. One was only ball milling, 12 hrs, the Mg and Ni powders for 12 hrs with additives such as $AB_5$, Ni, Co and Cu powders. In the other process the Mg and Ni powders were ball milled for 1 hr first and then heat treated at $300{\sim}400^{\circ}C$ for 1 hr to get $Mg_2Ni$ alloy, and finally the $Mg_2Ni$ alloy powders were ball milled with the additives for 12 hrs. The alloy powders prepared were compacted at room temperature under $7.64tons/cm^2$ into disk type electrodes for the electrochemical measurements. The experimntal results showed that the electrodes prepared with the heat treated alloy powders had a higher discharge capacities than those without heat treatment. The addition of Ni caused an increase of the discharge capacity and the addition of Co improved the cycling characteristics. The electrode prepared by ball milling of $Mg_2Ni$ and 10wt% Ni powders has showed the highest discharge capacity, 546mAh/g.alloy, which was 55% of the theoretical capacity.

  • PDF

Synthesis of ceria by combination of spray pyrolysis, postheat, and ball-milling and its characterization (분무열분해, 후소성 및 볼밀링을 조합한 방법을 이용한 세리아의 합성 및 특성연구)

  • Kim, Hyun-Ik;Kim, Sang Pil;Song, Jae-Kyung;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1057-1072
    • /
    • 2018
  • In this study, micro-sized $CeO_2$ particles were synthesized by spray pyrolysis, and EG(ethylene glycol) and CA(citric acid) as organic additives were added to obtain hollow and porous particle during spray pyrolysis, and characteristics of obtained ceria were investigated according to the amount of added organic additives. Spray pyrolysis, postheat and ball-milling were combined to give 6 paths. $CeO_2$ nano-sized particle was obtained by the path which has sequence of Spray Pyrolysis with 0.5 M of EG and CA${\rightarrow}$Post-heat${\rightarrow}$Ball-milling${\rightarrow}$Post-heat among 6 paths. The average particle size(24 nm with standard deviation of 3.8 nm) of $CeO_2$ nano-sized particle by TEM analysis is close to the primary particle size(20 nm) which was calculated by Debye-Scherrer equation. To investigate the morphological characteristics and structure of the synthesized nanoparticle powders, SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) and TEM(Transmission Electron Microscopy) were used.