• Title/Summary/Keyword: 밀도 불연속면

Search Result 32, Processing Time 0.029 seconds

Analysis of the Geological Structure of the Hwasan Caldera Using Potential Data (포텐셜 자료해석을 통한 화산칼데라 구조 해석)

  • Park, Gye-Soon;Yoo, Hee-Young;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo;Eom, Joo-Young;Kim, Dong-O;Park, Chan-Hong
    • Journal of the Korean earth science society
    • /
    • v.29 no.1
    • /
    • pp.1-12
    • /
    • 2008
  • A geophysical mapping was performed for Hwasan caldera which is located in Euisung Sub-basin of the southeastern part of the Korean Peninsula. In order to overcome the limitation of the previous studies, remote sensing technic was used and dense potential data were obtained and analyzed. First, we analyzed geological lineament for target area using geological map, digital elevation model (DEM) data and satellite imagery. The results were greatly consistent with the previous studies, and showed that N-S and NW-SE direction are the most dominant one in target area. Second, based on the lineament analysis, highly dense gravity data were acquired in Euisung Sub-basin and an integrated interpretation considering air-born magnetic data was made to investigate the regional structure of the target area. The results of power spectrum analysis for the acquired potential data revealed that the subsurface of Euisung Sub-basin have two density discontinuities at about 1 km and 3-5 km depth. A 1 km depth discontinuity is thought as the depth of pyroclastic sedimentary rocks or igneous rocks which were intruded at the ring vent of Hwasan caldera, while a 3-5 km depth discontinuity seems to be associated with the depth of the basin basement. In addition, three-dimensional gravity inversion for the total area of Euisung Sub-basin was carried out, and the inversion results indicated two followings; 1) Cretaceous Palgongsan granite and Bulguksa intrusion rocks, which are located in southeastern part and northeastern part of Euisung Sub-basin, show two major low density anomalies, 2) pyroclastic rocks around Hwasan caldera also have lower density when compared with those of neighborhood regions and are extended to 1.5 km depth. However, a poor vertical resolution of potential survey makes it difficult to accurately delineate the detailed structure caldera which has a vertically developed characteristic in general. To overcome this limitation, integrated analysis was carried out using the magnetotelluric data on the corresponding area with potential data and we could obtain more reasonable geologic structure.

Analysis of Contaminant Transport in the Ground using the Lattice-Boltzmann Method (격자 볼츠만 방법에 의한 지반 내 오염물질의 거동 분석)

  • Kang, Dong Hun;Yun, Tae Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6C
    • /
    • pp.267-274
    • /
    • 2012
  • The conventional approach to evaluate the contaminant transport in soils adopts the macro-scale implementation while the pore configuration and network is a dominant factor to determine the fate of contaminant. However, the observation of fate and transport at pore scale may not be readily approachable because of the computational expenses to solve Navier-Stokes equation. We herein present the 2D Lattice-Boltzmann method that enables to assess the local fluid velocity and density efficiently for the case of single phase and multi-components. The solute fate spatio-temperal space is explicitly determined by the advection of fluid flow. Two different types of idealized pore space provides the path of fluid. Also, solute transport, the velocity field and average concentration of solute are computed in steady state. Results show that the pore geometry such as tortuosity mainly affect the solute fate. It highlights the significance of the pore configuration and shape in granular soils and rock discontinuity in spite of the equivalent porosity.

A Study on the Mining Method for Limestone Mines with Less Environmental Hazards (환경오염 저감을 위한 석회석 광산개발방안에 대한 연구)

  • 임한욱;김재동;백환조
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.80-91
    • /
    • 2000
  • Open cut mining of limestone is generally considered to be more advantageous than underground mining in recovery, grade control, economics, and safety, but it causes substantial environmental pollutants such as ground vibration, noise, dust. It also changes ground surface and may destroy vegetation. The Halla limestone mine which lies adjacent to Baikdu mountains range is selected for a model study. To reduce environmental hazards, and to conserve original surface and woods, both open cut and underground mining methods must be adopted. In case of sub-level sloping. a unit block of 87m high, 70m wide, and 100∼l20m long is suggested with an estimated overall recovery of 42%. Some suggestions to reduce the environmental hazards are also included. The followings must be considered in determining the degree of fragmentation; the discontinuity conditions in the rock mass and the charge concentration both at the bottom and column of the hole. In addition to adopting a barrier wall for reducing environmental hazards, the probable production from underground mining is also discussed.

  • PDF

Subsurface Geology and Geologic Structure of the Euiseong Basin using Gravity, Magnetic, and Satellite Image Data (중력, 자력 및 위성영상 자료를 이용한 의성소분지의 지질 및 지구조 연구)

  • Yu Sang Hoon;Hwang Jong Sun;Min Kyung Duck;Woo Ik
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.143-153
    • /
    • 2005
  • Euiseong subbasin, included in the Kyungsang Basin, was created by the result of volcanic activity in the late Cretaceous, and contacts with Milyang and Youngyang subbasins by Palgongsan and Andong faults, respectively. In this study, geophysical survey is implemented fur investigating surface and subsurface geologic structure in Euiseong subbasin which composed with the complex of volcanic and plutonic rocks. To understand surface geologic feature, IRS satellite image and DEM(Digital Terrain Map) are used for analyzing lineament and its density. The numbers of lineaments show major trend in $N55^{\circ}\~65^{\circ}W$, and aspects of lineament lengths show major trend in $N55^{\circ}\~65^{\circ}W$ and N-S directions. 13 delineate subsurface density discontinuity; Power spectrum analysis was implemented for gravity anomaly data, resulting $4-5{\cal}km$ depth of basin basement and $0.5-0.6{\cal}km$ depth of shallow discontinuity. From the result of power spectrum analysis, 2.5-D modelings were implemented along two profiles of A-A' and B-B', and they show subsurface geology in detail. Analytic signal method for detecting boundaries of magnetic basements show 0.001-130 nT/m values, and high energy area show good correspondency with the boundaries of Palgongsan granite and caldera areas in Euiseong subbasin.

Effects of Geological Structures on Slope Stability : An Example from the Northwestern Part of Daegu, Korea (퇴적암 내의 지질구조가 비탈면 안정성에 미치는 영향 : 대구 북서부 지역의 예)

  • Ko, Kyoung-Tae;Choi, Jin-Hyuck;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • The purpose of this work is to gain a better understanding of the interrelationships between geological structures and slope failure in sedimentary rocks. In the studied slopes, construction-related slope failure could only be observed on the south-dipping slopes. This indicates that slope stability may be dependent on the angular relationships between the dip direction of bedding and the orientation of the slope. Slope failure continued, post-construction, around large fault zones in the studied outcrop; these fault damage zones are, however, not easily recognized in the field. Here we suggest a new method that uses accumulated fracture density to precisely identify fault damage zones. Multiple-faced slopes are now increasingly being exposed during large-scale construction projects in South Korea. This multiple-faced slope analysis indicates that the stability of a slope should be evaluated by identifying domains, through the analysis of possible slopes and their angular relationships with bedding and other discontinuities, prior to construction. Therefore, careful consideration of geological structures such as bedding and other discontinuities, and their angular relationships during the design of cuttings through sedimentary rocks, will increase the efficiency of construction and enable the safe construction of more stable slopes that will retain their stability after construction.

Comparative Study of Square-Inventory Method with Scanline Survey in Slope Stability Analysis (사면 안정 분석을 위한 정면적법과 선조사법의 비교연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.119-129
    • /
    • 2009
  • In relation to slope stability analysis, geologic characteristics and engineering properties of the discontinuities in three slopes selected are compared and analyzed by both square-inventory method and scanline survey. The aim of the study is in evaluating which method is applied better in slope stability analysis by comparing results of the two methods with those of direct observation on outcrop of slope failures generated. In each slope, results of comparative analysis among geologic and engineering properties are analyzed similarly one another. However, results of orientation analysis in slope 2 are different each other, which indicates orientation of joints in slope 2 depends on persistency and frequency of each joint and also indicates appearance of new joint set with different orientation. Probability density distribution and spacing in slope 3 are high in comparison to those in slope 2 and 3. The reasons are that distribution of psammitic rocks and development of minor folds in slope 3 unlike slope 2 and 3 are closely associated with development of joints. The research data indicate that the square-inventory method predicts more precise failure aspects and is more effective way than scanline survey in analyzing slope stability of the study area.

Physical and Mechanical Properties on Ipseok-dae Columnar Joints of Mt. Mudeung National Park (무등산국립공원 입석대 주상절리대에 대한 물리역학적 특성)

  • Ko, Chin-Surk;Kim, Maruchan;Noh, Jeongdu;Kang, Seong-Seung
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.383-392
    • /
    • 2016
  • This study is to evaluate the physical and mechanical properties on the Ipseok-dae columnar joints of Mt. Mudeung National Park. For these purposes, physical and mechanical properties as well as discontinuity property on the Mudeungsan tuff, measurement of vibration and local meteorology around columnar joints, and ground deformation by self-weight of columnar joints were examined. For the physical and mechanical properties, average values were respectively 0.65% for porosity, 2.69 for specific gravity, 2.68 g/cm3 for density, and 2411 m/s for primary velocity, 323 MPa for uniaxial compressive strength, 81 GPa Young's modulus, and 0.25 for Poisson's ratio. For the joint shear test, average values were respectively 3.15 GPa/m for normal stiffness, 0.38 GPa/m for shear stiffness, 0.50 MPa for cohesion, and 35° for internal friction angle. The JRC standard and JRC chart was in the range of 4~6, and 1~1.5, respectively. The rebound value Q of silver schmidt hammer was 57 (≒ 90 MPa). It corresponds 20% of the uniaxial compressive strength of intact rock. The maximum vibration value around the Ipseok=dae columnar joints was in the range of 0.57 PPV (mm/s)~2.35 PPV (mm/s). The local meteorology of surface temperature, air temperature, humidity, and wind on and around columnar joints appeared to have been greatly influenced the weather on the day of measurement. For the numerical analysis of ground deformation due to its self-weight of the Ipseok-dae columnar joints, the maximum displacement of the right ground shows when the ground distance is approximately 2 m, while drastically decreased by 2~4 m, thereafter was insignificant. The maximum displacement of the middle ground shows when the ground distance is approximately 0~2 m, while drastically decreased by 3~10 m, thereafter was insignificant. The maximum displacement of the left ground shows when the ground distance is approximately 5~6 m, while drastically decreased by 6~10 m, thereafter was insignificant.

Study of Crustal Structure in North Korea Using 3D Velocity Tomography (3차원 속도 토모그래피를 이용한 북한지역의 지각구조 연구)

  • So Gu Kim;Jong Woo Shin
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.293-308
    • /
    • 2003
  • New results about the crustal structure down to a depth of 60 km beneath North Korea were obtained using the seismic tomography method. About 1013 P- and S-wave travel times from local earthquakes recorded by the Korean stations and the vicinity were used in the research. All earthquakes were relocated on the basis of an algorithm proposed in this study. Parameterization of the velocity structure is realized with a set of nodes distributed in the study volume according to the ray density. 120 nodes located at four depth levels were used to obtain the resulting P- and S-wave velocity structures. As a result, it is found that P- and S-wave velocity anomalies of the Rangnim Massif at depth of 8 km are high and low, respectively, whereas those of the Pyongnam Basin are low up to 24 km. It indicates that the Rangnim Massif contains Archean-early Lower Proterozoic Massif foldings with many faults and fractures which may be saturated with underground water and/or hot springs. On the other hand, the Pyongyang-Sariwon in the Pyongnam Basin is an intraplatform depression which was filled with sediments for the motion of the Upper Proterozoic, Silurian and Upper Paleozoic, and Lower Mesozoic origin. In particular, the high P- and S-wave velocity anomalies are observed at depth of 8, 16, and 24 km beneath Mt. Backdu, indicating that they may be the shallow conduits of the solidified magma bodies, while the low P-and S-wave velocity anomalies at depth of 38 km must be related with the magma chamber of low velocity bodies with partial melting. We also found the Moho discontinuities beneath the Origin Basin including Sari won to be about 55 km deep, whereas those of Mt. Backdu is found to be about 38 km. The high ratio of P-wave velocity/S-wave velocity at Moho suggests that there must be a partial melting body near the boundary of the crust and mantle. Consequently we may well consider Mt. Backdu as a dormant volcano which is holding the intermediate magma chamber near the Moho discontinuity. This study also brought interesting and important findings that there exist some materials with very high P- and S-wave velocity annomoalies at depth of about 40 km near Mt. Myohyang area at the edge of the Rangnim Massif shield.

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF

Subsurtace Geological Structure of the Downstream Area of the Jangsung Lake (장성호 하류지역의 지하지질구조)

  • 김성균;김용준;오진용;김민선;서구원
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.101-112
    • /
    • 1997
  • Gravity and electrical resistivity surveys were carried out across the Kwangju fault in the downstream area of the Jangsung Lake, to investigate the location and geometrical feature of the fault. In the resistivity survey, dipole - dipole array method was adopted for 3 survey lines of which length and electrode spacing are 500m and 25m, respectively. Resistivity data are interpreted with aid of computer program "RESIS" which is widely used in resistivity data analysis and two dimensional resistivity profiles are obtained for 3 survey lines. Two large fracture zones relevant to the Kwangju fault are identified in the resistivity profiles. The total of 80 gravity data are observed with the mean spacing of 40 m and the exact leveling is accompanied to obtain more precise gravity anomalies. The subterranean density discontinuities calculated from the inverse method are appeared at the depths of 650rn and 120m. It is considered that the deep discontinuity indicates boundary between Jurassic granites and oveflying Cretaceous tuff formation. while, the shallow discontinuity is interpreted to be a boundary between alluvial deposits and basements. The subsurface geological structure to satisfy the observed Bouguer anomaly is determined from the iterative forward method in which results from existing surface geological informations, the inverse method, and from the resistivity interpretations are employed as an iuitial model. In conclusion, Kwangju fault is appeared to be a high angle normal fault mainly formed in tension stress filed.

  • PDF