Journal of the Korean Institute of Intelligent Systems
/
v.13
no.4
/
pp.391-396
/
2003
This paper proposes a new approach that converts continuous-valued attributes to categorical-valued ones considering the distribution of target attributes(classes). In this approach, It can be possible to get optimal interval boundaries by considering the distribution of data itself without any requirements of parameters. For each attributes, the distribution of target attributes is projected to one-dimensional space. And this space is clustered according to the criteria like as the density value of each target attributes and the amount of overlapped areas among each density values of target attributes. Clusters which are made in this ways are based on the probabilities that can predict a target attribute of instances. Therefore it has an interval boundaries that minimize a loss of information of original data. An improved performance of proposed discretization method can be validated using C4.5 algorithm and UCI Machine Learning Data Repository data sets.
In order to investigate the response in fauna and biological communities of terrestrial insects to the vegetation encroachment on the sandbar, species composition, species diversity, functional species traits and community structure of land-dwelling insects sampled by a pit-fall trap were compared at the bare and vegetated sandbar of a typical sand-bed stream, the Naeseong Stream, Korea. Species diversity of the insects was increased but their density was decreased as the riparian vegetation encroached at the sandbar. In particular, indicator species of bare sandbar such as Cicindela laetescripta and Dianemobius csikii, were found at the bar sandbar. The insect communities were clearly classified at the bare and vegetated sandbar according to coverages of riparian plants. The food web of the bare sandbar was composed of detritus - detritivore and scavenger - predator consisted mainly of Coleoptera. On the other hand, the food web of the vegetated sandbar was composed of plants - sucking and chewing herbivore - parasitoid and predator. These results showed that biodiversity of terrestrial insects was increased, food web was changed from grazing to detritus food chain, and insect fauna specific bare sandbar disappeared as the riparian vegetation invaded on the sandbar of a sand-bed stream.
This paper proposes DBSCAN-SI that is an algorithm for clustering with influences of spatial objects. DBSCAN-SI that is extended from existing DBSCAN and DBSCAN-W converts from non-spatial properties to the influences of spatial objects during the spatial clustering. It increases probability of inclusion to the cluster according to the higher the influences that is affected by the properties used in clustering and executes the clustering not only respect the spatial distances, but also volume of influences. For the perspective of specific property-centered, the clustering technique proposed in this paper can makeup the disadvantage of existing algorithms that exclude the objects in spite of high influences from cluster by means of being scarcely close objects around the cluster.
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.22
no.1
/
pp.81-92
/
2023
Traffic state classification is crucial for time-of-day (TOD) traffic signal control. This paper proposed a traffic state classification technique applying Deep-Embedded Clustering (DEC) method that uses a high dimensional traffic data observed at all signalized intersections in a traffic signal control sub area (SA). So far, signal timing plan has been determined based on the traffic data observed at the critical intersection in SA. The current method has a limitation that it cannot consider a comprehensive traffic situation in SA. The proposed method alleviates the curse of dimensionality and turns out to overcome the shortcomings of the current signal timing plan.
Through sample-size-based rarefaction analyses, we tried to suggest the appropriate degree of sample concentration and sub-sample extraction, as a way to estimate more accurate zooplankton species diversity when assessing biodiversity. When we collected zooplankton from three reservoirs with different environmental characteristics, the estimated species richness (S) and Shannon's H' values showed different changing patterns according to the amount of sub-sample extracted from the whole sample by reservoir. However, consequently, their zooplankton diversity indices were estimated the highest values when analyzed by extracting the largest amount of sub-sample. As a result of rarefaction analysis about sample coverage, in the case of deep eutrophic reservoir (Juam) with high zooplankton species and individual numbers, it was analyzed that 99.8% of the whole samples were represented by only 1 mL of sub-sample based on 100 mL of concentrated samples. On the other hand, in Soyang reservoir, which showed very small species and individual numbers, a relatively low representation at 97% when 10 mL of sub-sample was extracted from the same amount of concentrated sample. As such, the representation of sub-sample for the whole zooplankton sample varies depending on the individual density in the sample collected from the field. If the degree of concentration of samples and the amount of sub-sample extraction are adjusted according to the collected individual density, it is believed that errors that occur when comparing the number of species and diversity indices among different water bodies can be minimized.
A graph cuts method has recently attracted a lot of attentions for image segmentation, as it can globally minimize energy functions composed of data term that reflects how each pixel fits into prior information for each class and smoothness term that penalizes discontinuities between neighboring pixels. In previous approaches to graph cuts-based automatic image segmentation, GMM(Gaussian mixture models) is generally used, and means and covariance matrixes calculated by EM algorithm were used as prior information for each cluster. However, it is practicable only for clusters with a hyper-spherical or hyper-ellipsoidal shape, as the cluster was represented based on the covariance matrix centered on the mean. For arbitrary-shaped clusters, this paper proposes graph cuts-based image segmentation using mean shift analysis. As a prior information to estimate the data term, we use the set of mean trajectories toward each mode from initial means randomly selected in $L^*u^*{\upsilon}^*$ color space. Since the mean shift procedure requires many computational times, we transform features in continuous feature space into 3D discrete grid, and use 3D kernel based on the first moment in the grid, which are needed to move the means to modes. In the experiments, we investigate the problems of mean shift-based and normalized cuts-based image segmentation methods that are recently popular methods, and the proposed method showed better performance than previous two methods and graph cuts-based automatic image segmentation using GMM on Berkeley segmentation dataset.
With the proliferation of multimedia data, there is an increasing need to support the indexing and retrieval of high-dimensional image data. Although there have been many efforts, the performance of existing multidimensional indexing methods is not satisfactory in high dimensions. Thus the dimensionality reduction and the approximate solution methods were tried to deal with the so-called dimensionality curse. But these methods are inevitably accompanied by the loss of precision of query results. Therefore, recently, the vector approximation-based methods such as the VA- file and the LPC-file were developed to preserve the precision of query results. However, the performance of the vector approximation-based methods depend largely on the size of the approximation file and they lose the advantages of the multidimensional indexing methods that prune much search space. In this paper, we propose a new index structure called the GC-tree for efficient similarity search in image databases. The GC-tree is based on a special subspace partitioning strategy which is optimized for clustered high-dimensional images. It adaptively partitions the data space based on a density function and dynamically constructs an index structure. The resultant index structure adapts well to the strongly clustered distribution of high-dimensional images.
Journal of the Korea Institute of Information Security & Cryptology
/
v.25
no.5
/
pp.1131-1141
/
2015
In this paper, we proposed a new approach of machine learning based method for detecting game-bots from normal players in MMORPG by inspecting the player's action log data especially in-game money increasing/decreasing event log data. DBSCAN (Density Based Spatial Clustering of Applications with Noise), an one of density based clustering algorithms, is used to extract the attributes of spatial characteristics of each players such as a number of clusters, a ratio of core points, member points and noise points. Most of all, even game-bot developers know principles of this detection system, they cannot avoid the system because moving a wide area to hunt the monster is very inefficient and unproductive. As the result, game-bots show definite differences from normal players in spatial characteristics such as very low ratio, less than 5%, of noise points while normal player's ratio of noise points is high. In experiments on real action log data of MMORPG, our game-bot detection system shows a good performance with high game-bot detection accuracy.
Journal of the Korean Data and Information Science Society
/
v.27
no.5
/
pp.1273-1284
/
2016
In this paper, we analyzed the patents on machine learning using keyword network analysis and clique analysis. To construct a keyword network, important keywords were extracted based on the TF-IDF weight and their association, and network structure analysis and clique analysis was performed. Density and clustering coefficient of the patent keyword network are low, which shows that patent keywords on machine learning are weakly connected with each other. It is because the important patents on machine learning are mainly registered in the application system of machine learning rather thant machine learning techniques. Also, our results of clique analysis showed that the keywords found by cliques in 2005 patents are the subjects such as newsmaker verification, product forecasting, virus detection, biomarkers, and workflow management, while those in 2015 patents contain the subjects such as digital imaging, payment card, calling system, mammogram system, price prediction, etc. The clique analysis can be used not only for identifying specialized subjects, but also for search keywords in patent search systems.
Journal of the Korean Society of Environmental Restoration Technology
/
v.2
no.3
/
pp.10-17
/
1999
In order to confirm the effectiveness of the natural river improvement technique, the analysis of vegetation was carried out in Yangjae stream between 1996 and 1998. The results of this study showed the numbers of riparian plants had increased from 41 species to 53 species, and the dominant species had changed from annual and biannual(Humulus japonicus, Persicaria thunbergii, Persicaria hydropiper, Panicum dichotomiflorum, Echinochloa crus-galli) to perennials (Phragmites communis). The variation in biomass and biodiversity index were measured and calculated according to the rehabilitation method. Biomass were varied 302 to $828g/m^2$ and biodiversity index was varied 1.53 to 1.52 at point bar plots(A treatment plots) from 1996 to 1998. In conclusion, the natural river improvement technique which has operated in Yanjaecheon for three years has contributed to restoration of riparian plants. Additionally, subsequent study using this technique should be followed in the near future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.