DOI QR코드

DOI QR Code

종 다양성 평가를 위한 호소 생태계 동물플랑크톤 조사 방법 연구: 희박화 분석(rarefaction analysis)을 이용한 적정 시료 농축 정도 및 부차 시료 추출량의 검증

Validation of Suitable Zooplankton Enumeration Method for Species Diversity Study Using Rarefaction Curve and Extrapolation

  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 최예림 (경희대학교 환경학및환경공학과) ;
  • 김현준 (경희대학교 환경학및환경공학과) ;
  • 홍근혁 (경희대학교 환경학및환경공학과) ;
  • 박영석 (경희대학교 생물학과) ;
  • 김용재 (대진대학교 생명과학과) ;
  • 장광현 (경희대학교 환경학및환경공학과)
  • Hye-Ji Oh (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Yerim Choi (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Hyunjoon Kim (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Geun-Hyeok Hong (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Young-Seuk Park (Department of Biology, Kyung Hee University) ;
  • Yong-Jae Kim (Department of Life Science, Daejin University) ;
  • Kwang-Hyeon Chang (Department of Environmental Science and Engineering, Kyung Hee University)
  • 투고 : 2022.12.08
  • 심사 : 2022.12.23
  • 발행 : 2022.12.31

초록

본 연구에서는 수생태계 생물다양성을 평가할 때보다 정확한 동물플랑크톤 종 다양성을 산정하고 수체 간 상대 비교 시 오차를 줄이기 위한 방안으로서, 관찰 노력, 즉 시료의 농축 정도 및 부차시료 추출량의 적정안을 제시하기 위해 수심, 영양상태 및 동물플랑크톤 군집 출현 양상이 서로 다른 세 개 호소를 대상으로 표준 크기 기반 희박화 분석(sample-size-based rarefaction analysis)을 수행하였다. 현장에서 동일한 채집 도구를 이용, 조사 정점의 수심을 고려하여 채집된 동물플랑크톤 시료로부터 부차시료 추출량을 달리함에 따라 추정되는 생물다양성 (richness, Shannon's H')은 호소에 따라 변화 양상이 다르게 나타났으나, 세 호소 모두 최대 시료 분석량에서 다양성 지수 값이 가장 높게 추정되었다. Sample coverage에 대한 희박화 분석 결과, 채집 시료 내 동물플랑크톤 출현 종수 및 개 체 밀도가 모두 많은 주암호의 경우 농축 시료 100 mL 기준 1 mL의 부차시료만 검경해도 해당 표본이 전체 시료의 99.8%를 대표하는 것으로 나타났으나, 매우 적은 출현 종수 및 개체 밀도를 보인 소양호에서는 동량의 농축 시료로부터 10 mL의 부차시료를 추출했을 때도 97%로 비교적 낮은 대표성을 보였다. 이와 같이 동물플랑크톤 전체 채집 시료에 대한 부차시료의 대표성은 현장으로부터 채집된 시료 내 개체 밀도에 따라 다르게 나타나며, 채집 개체 밀도에 따라 시료의 농축 정도 및 부차시료 추출량을 조절한다면 최소의 관찰 노력으로 지점 간 출현 종수 및 다양성 지수 비교 시 발생하는 오차를 최소화할 수 있을 것으로 사료된다. 또한, 본 연구 결과는 호소 동물플랑크톤 군집 분석 및 수체 간 상대 비교를 위한 동물플랑크톤 시료 검경 방법에 있어 시료 여과량, 농축 및 부차시료 추출 방법을 표준화하는데 기준이 될 수 있는 정보를 제공한다.

Through sample-size-based rarefaction analyses, we tried to suggest the appropriate degree of sample concentration and sub-sample extraction, as a way to estimate more accurate zooplankton species diversity when assessing biodiversity. When we collected zooplankton from three reservoirs with different environmental characteristics, the estimated species richness (S) and Shannon's H' values showed different changing patterns according to the amount of sub-sample extracted from the whole sample by reservoir. However, consequently, their zooplankton diversity indices were estimated the highest values when analyzed by extracting the largest amount of sub-sample. As a result of rarefaction analysis about sample coverage, in the case of deep eutrophic reservoir (Juam) with high zooplankton species and individual numbers, it was analyzed that 99.8% of the whole samples were represented by only 1 mL of sub-sample based on 100 mL of concentrated samples. On the other hand, in Soyang reservoir, which showed very small species and individual numbers, a relatively low representation at 97% when 10 mL of sub-sample was extracted from the same amount of concentrated sample. As such, the representation of sub-sample for the whole zooplankton sample varies depending on the individual density in the sample collected from the field. If the degree of concentration of samples and the amount of sub-sample extraction are adjusted according to the collected individual density, it is believed that errors that occur when comparing the number of species and diversity indices among different water bodies can be minimized.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(과제번호: 2020003050003).

참고문헌

  1. Cairns, J., P.V. McCormick and B.R. Niederlehner. 1993. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263:1-44. https://doi.org/10.1007/BF00006084
  2. Chakraborty, J., K. Palit and S. Das. 2022. Metagenomic approaches to study the culture-independent bacterial diversity of a polluted environment-a case study on north-eastern coast of Bay of Bengal, India, p. 81-107. In: Microbial Biodegradation and Bioremediation (Das, S. and H.R. Dashi, eds.). Elsevier, Amsterdam.
  3. Chao, A. and L. Jost. 2012. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93: 2533-2547. https://doi.org/10.1890/11-1952.1
  4. Chao, A., N.J. Gotelli, T.C. Hsieh, E.L. Sander, K.H. Ma, R.K. Colwell and A.M. Ellison. 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84: 45-67. https://doi.org/10.1890/13-0133.1
  5. Cho, G.S. 1993. Illustrated book for Korean freshwater zooplankton. Academy book, Seoul. pp. 208-354.
  6. Delang, C.O. and W.M. Li. 2013. Species Richness and Diversity, p. 39-66. In: Ecological Succession on Fallowed Shifting Cultivation Fields. Springer, Dordrecht.
  7. procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4: 379-391.
  8. Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54(2): 427-432. https://doi.org/10.2307/1934352
  9. Hsieh, T.C., K.H. Ma and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7: 1451-1456. https://doi.org/10.1111/2041-210X.12613
  10. Margalef, R. 1958. Information theory in biology. General Systems Yearbook 3: 36-71.
  11. McGlinn, D.J., X. Xiao, F. May, N.J. Gotelli, T. Engel, S.A. Blowes, T.M. Knight, O. Purschke, J.M. Chase and B.J. McGill. 2018. Measurement of biodiversity (MoB): a method to separate the scale-dependent effects of species abundance distribution, density, and aggregation on diversity change. Methods in Ecology and Evolution 10: 258-269.
  12. McNaughton, S.J. 1967. Relationships among functional properties of Californian grassland. Nature 216(5111): 168-169. https://doi.org/10.1038/216168b0
  13. Mizuno, T. and E. Takahashi. 1991. An illustrated guide to freshwater zooplankton in Japan, pp. 1-305. Tokai University press, Tokyo.
  14. NIBR. 2019. National species list of Korea - II. Vertebrates.Invertebrates.Protozoans. National Institute of Biological Resources, Incheon, Korea.
  15. NIER. 2017. Biomonitoring Survey and Assessment Manual. National Institute of Environmental Research, Incheon, Korea.
  16. NIER. 2019. Guideline for estuary aquatic ecosystem survey and health assessment. National Institute of Environmental Research, Incheon, Korea.
  17. Oh, H.J., Y.J. Chae, D. Ku, Y.J. Kim, J.H. Wang, B. Choi, C.W. Ji, I.S. Kwak, Y.S. Park, G.S. Nam, Y.J. Kim and K.H. Chang. 2020. A comparative study on the information of zooplankton community based on towing type and depth in the lake ecosystems. Korean Journal of Ecology and Environment 53: 365-373. https://doi.org/10.11614/KSL.2020.53.4.365
  18. Oh, H.J., M.H. Jang, J.H. Kim, Y.J. Kim, S.H. Lim, D.H. Won, J.S. Moon, S. Kwon and K.H. Chang. 2022. Comparative analysis of diversity characteristics (γ-, α-, and β-diversity) of biological communities in the Korean Peninsula estuaries. Korean Journal of Ecology and Environment 55: 84-98. https://doi.org/10.11614/KSL.2022.55.1.084
  19. Pielou, E.C. 1975. Ecological diversity. Wiley, New York.
  20. R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  21. Shannon, C.E. 1948. A mathematical theory of communication. The Bell System Technical Journal 27(3): 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  22. Simpson, E.H. 1949. Measurement of diversity. Nature 163(4148): 688-688. https://doi.org/10.1038/163688a0
  23. Soininen, J., S. Passy and H. Hillebrand. 2012. The relationship between species richness and evenness: a meta-analysis of studies across aquatic ecosystems. Oecologia 169: 803-809. https://doi.org/10.1007/s00442-011-2236-1
  24. Wang, L., L. Jin, B. Xue, Z. Wang and Q. Peng. 2019. Characterizing the bacterial community across the gastrointestinal tract of goats: Composition and potential function. Microbiologyopen 8(9): e00820. 
  25. Willis, A.D. 2019. Rarefaction, alpha diversity, and statistice. Frontiers in Microbiology 10: 2407. https://doi.org/10.3389/fmicb.2019.02407