• Title/Summary/Keyword: 미토콘드리아 단백질

Search Result 124, Processing Time 0.033 seconds

Biochemical Aspect of Superoxide Toxicity to Plant Mitochondria (식물 미토콘드리아에 대한 Superoxide독성의 생화학적 측면)

  • Jung, Jin;In, Man-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 1989
  • Biochemical consequence of the accumulation in cells of superoxide $(O^{-}_{2})$ which was proposed to be probably a common chemical factor in the secondary process of the mechanism of chilling injury as well as in the visible light photodamage in cells of higher plants, has been investigated in the present work. Especially focused was the destructive effect of $O^{-}_{2}$ on the biochemical activity of mitochondria, as informations which support the suggestion that mitochondrial inner membrane is the major site of $O^{-}_{2}$ production have been collected. Mitochondria and submitochondrial particles (SMP) were prepared from soybean hypocotyls for this case study. When SMP were treated with the electrolytically produced $O^{-}_{2}$ they suffered not only inhibition of the membrane-bound enzymes as demonstrated by cytochrome c oxidase, but also lipid peroxidation of membrane as proved by malondialdehyde production. Malate dehydrogenase present in the protein extract from mitochondrial matrix was also inhibited by the $O^{-}_{2}$ treatment. These results exhibited the chaotic effect of the overproduction and accumulation of $O^{-}_{2}$ in cells under a certain abnormal circumstance such as environmental stress on the physiological function of mitochondrial; disruption of the cellular metabolic pathways and the structural integrity of membrane.

  • PDF

Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia (동충하초(Cordyceps spp.)의 유효 생리활성 성분인 cordycepin의 근감소증 예방에 대한 연구 동향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.482-490
    • /
    • 2022
  • Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and as life expectancy increases, its prevalence will continue to increase in the future. During the aging process, chronic oxidative stress and increased inflammatory responses act as major contributors to skeletal muscle loss. In addition, disruption of autophagy and apoptosis signals associated with dysfunction of mitochondria, which are essential for energy metabolism, accelerates the loss of muscle proteins. The pharmacological effect of cordycepin, a major physiologically active substance in the genus Cordyceps, which has been widely used for the prevention and treatment of various diseases for a long time, is directly related to its antioxidant and anti-inflammatory actions. In this review, we present the correlation between apoptosis, autophagy, protein catabolism, and satellite cell activity important for muscle regeneration using cordycepin for the prevention and treatment of sarcopenia. Although there have been few studies so far on the use of cordycepin for sarcopenia, previous studies suggest that cordycepin may contribute to inhibiting the age-related weakening of mitochondrial function and blocking the breakdown of muscle proteins. In addition, the protective effect of cordycepin on muscle cell damage is considered to be closely related to its antioxidant and anti-inflammatory activities. Therefore, it is considered that more continuous basic research is needed, focusing on the molecular biological mechanism of cordycepin, which is involved in the anti-aging of muscle cells.

Ashitaba and red ginseng complex stimulates exercise capacity by increasing mitochondrial biogenesis (미토콘드리아 생합성 촉진을 통한 신선초와 홍삼 복합물의 운동수행능력 증가 효과)

  • Kim, Changhee;Kim, Mi-Bo;Lee, Seung-Ho;Kim, Ye-Jin;Hwang, Jae-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.685-692
    • /
    • 2017
  • Mitochondrial biogenesis-a process that leads to an increment in the number and density of mitochondria, improves physical performance and body health by enhancing exercise capacity. In the present study, we investigated the stimulatory effect of Ashitaba and red ginseng complex (ARC) on exercise capacity in L6 skeletal muscle cells and mice. In L6 skeletal muscle cells, ARC increased the mitochondrial contents and ATP production by activating AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-$1{\alpha}$) and up-regulating the mRNA expression of nuclear respiratory factor-1 (NRF-1) and mitochondrial transcription factor A (TFAM). In the animal experiments, mice treated with ARC showed an increment in exercise capacity as compared with mice treated with Ashitaba extract or red ginseng extract alone. These studies indicate that ARC might serve as a potential natural candidate for enhancing exercise capacity by stimulation of mitochondrial biogenesis.

Mutational Analysis of Mitochondria DNA in Children with IgA Nephropathy (소아 IgA 신병증 환자에서 미토콘드리아 DNA 돌연변이 분석)

  • Eom, Tae Min;Jang, Chang-Han;Kim, Hyoung Kyu;Kim, Nari;Chung, Yun Seo;Han, Jin;Chung, Woo Yeong
    • Childhood Kidney Diseases
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Purpose: The association of mitochondrial DNA (mtDNA) mutations, deletions and copy number with progressive changes in patients with some glomerular disease and end-stage renal disease have been reported. In this study, we performed mtDNA mutation analysis in children with IgA nephropathy to investigate its role in progressive clinical course. Methods: Seven children with IgA nephropathy were involved in this study. MtDNA isolated from platelet was amplified by PCR and sequenced entirely. Results: The mean age at renal biopsy was $11.5{\pm}2.2$ year and the mean age at latest evaluation was $17.9{\pm}3.2$ year. The mean follow-up period were $7.8{\pm}3.1$ years. Patients was divided into 2 groups according to the amount of proteinuria at presenting manifestation. Group 2 patients were nephrotic syndrome. Renal function reveals within normal range in all patients. In group 2 patients, the mean serum albumin level was significantly lower than those of group 1 ($3.7{\pm}0.6g/dL$ vs. $4.7{\pm}0.2g/dL$, P=0.0241) and the mean total cholesterol level was significantly higher than those of group 1 ($222.7{\pm}35.7mg/dL$ vs. $148.3{\pm}29.1mg/dL$, P=0.0283). In Group 2 patients, total amount of protein of 24 hour collected urine also significantly higher than those of group 1 ($1,466.0{\pm}742.5mg$ vs. $122.5{\pm}48.1mg$, P=0.0135). Pr/Cr ratio in random urine sample was also higher in group 2 than those of group 1 but the statistical significance was not noted ($1.8{\pm}1.6$ vs. $0.2{\pm}0.2$, P=0.0961). Deletion of mtDNA nt 8272-8281 were observed in two patients, one patient in each groups, respectively. This is noncoding lesion. No patients demonstrated the mtDNA mutations. Conclusions: We have identified a deletion of mtDNA nt 8272-8281 in two children with IgA nephropathy. Further studies are needed to clarify the role of mitochondrial function in the progressive change of IgA nephropathy.

Studies on the Toxicity of $\delta$-endotoxin of Bacillus thuringiensis to the Several Tissues of Hyphantria cunea Drury (미국흰불나방(Hyphantria cunea Drury)에 대한 Bacillus thuringiensis 내독소단백질의 독성효과에 관한 연구)

  • 전향미;조자향;강석권;서숙재
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.1
    • /
    • pp.62-67
    • /
    • 1995
  • Ultrastructural changes of tissues caused by Bacillus thuringiensis var. kurstaki $\delta$-endotoxin intoxication of Hyphantria cunea were observed by transmission electron microscopy. Bt $\delta$-endotoxin crystals induced the disruption of microvilli, vacuolation of cytoplasm, changes in the cisternae of the endoplasmic reticulum, disappearance of basal striations, loss of ribosomes, and changes in the configurations of mitochondria in the columnar cell of midgut. The fat body cells also showed spherical endoplasmic reticulum and distorted mitochondria, and then the cells were destroyed.

  • PDF

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats (트레드밀 지구성 운동이 streptozotocin으로 유발된 당뇨 흰쥐의 뇌에서 PGC-1α, GLUT-1, Tfam 단백질 및 항산화 효소(Cu, Zn-SOD, Mn-SOD)의 발현량에 미치는 영향)

  • Park, Noh-Hwan;Lee, Jin;Jung, Kook-Hyun;Choi, Bong-Am;Jang, Hyung-Chae;Lee, Suk-In;Lee, Dong-Soo;Cho, Joon-Yong
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.435-443
    • /
    • 2011
  • The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.

A Study on the Distribution of Cytochrome-c-oxidase Subunit in the Cristae of Mitochondria (미토콘드리아 크리스테에 존재하는 cytochrome-c-oxidase의 단백질 소단위 분포에 관한 연구)

  • Kim, Soo-Jin;Lee, Ji-Hyon;Chung, Cha-Kwon
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.41-51
    • /
    • 1994
  • The topology of the enzyme has been investigated by biochemical studies including chemical labeling and cross linking. Thirteen subunits(polypeptides) of the cytochrome-c-oxidase have localistic characteristics of existing in the matrix side or cytoplasmic side in the mitochondria. In order to observe the distribution of the enzyme subunit on the mitochondria membrane, immunogold-labeling methods were employed. Antibody was obtained from the serum of immunized rabbit with enzyme subunit antigen which was obtained from cytochrome-c-oxidase of the beef heart muscle mitochondria. Beef heart muscle tissue as a tissue antigen was stained with immunized rabbit IgG and protein A gold complex. Electron microscopy has identified the existance of cytochrome-c-oxidase subunit $Mt_I,\;Mt_{II}\;and\;Mt_{III}$ on the membrane of cristae and outer chamber of mitochondria and the subunit $C_{IV}$ on the membrane of cristae and matrix of mitochondria. Particularly, the subunit $C_{IV}$ was also observed to exist in the sarcoplasm of muscle tissue.

  • PDF

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells (인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.835-842
    • /
    • 2016
  • The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

Ultrastructural Study of Germ Cell Development and Reproductive Cycle of the Hen Clam, Mactra chinensis on the West Coast of Korea (한국 서해산 개량조개, Mactra chinensis의 생식세포발달의 미세구조적 연구 및 생식주기)

  • Chung, Ee-Yung
    • Development and Reproduction
    • /
    • v.1 no.2
    • /
    • pp.141-156
    • /
    • 1997
  • 1992년 1월부터 12월까지 1년간에 걸쳐 전북 군산, 선연리 조하애에서 채집된 개량조개, Mactra chinensis Philippi를 대상으로 생식세포 발달과 생식소 발달양상을 조사하기 위해 토과형 전자현미경으로 미세구조 변활르 관찰하였고, 정확한 산란기를 규명하기 위해 조직학적으로 생식주기를 조사하였다. 개량조개는 장웅이체이다. 난황형성과정은 난모세포의 발달정도에 따라 다르게 나타나고 있다. 전난황형성기 난모세포질 내에서는 핵주변 구여게 골지장치와 수많은 공포들 및 미토콘드리아들이 출현하고 있는데 이들은 차후, 지방적 형성에 관여한다. 난황형성전기 난모세포에서는 지방적 및 지질과립들이 핵막 근처에서 출현하여 피질층쪽으로 분산되는 반면, 같은 발달단계의 난모세포질의 피질구역에서는 피질과립들 (단백질성 난황과립)이 처음으로 생성되어 난황막 근처의 피질층에서 핵주변 구역쪽으로 분산 분포된다. 난황형성후기 난모세포에서는 세포질 내의 골지장치, 공포, 미토콘드리아, 그리고 조면소포체들이 자율합성에 의해 난황과립 형성에 관영하고 있다. 반면, 외인성 물질들인 지질형태의 과립들, 단백질성 물질 및 다량의 글리코겐 입자들이 생식상피 낸에서 출현하고 있는데, 이들 물질이 생식상피에서 난황막 구조물인 미세융모를 통해 난황형성 후기 난모세포의 난질 내로 통과해 들어가는 현상이 관찰되었다. 이와 같은 현상은 난황성성이 일어날 때에 hterosynthesis가 일어나고 있음을 시사한다. 완숙난모세포의 난경은 약 50-60 \mu m이고, 완숙정자 두부의 길이는 대략 3 \mu m이며, 미부의 길이는 약 30 \mu m정도이다. 정자 미부편모의 axoneme은 중앙의 2개의 미세소관(microtubule)과 주변에 위치한 9개의 2중 미세소관 (microtubule)으로 구성되어 있다. 본 종의 산란기는 5월에서 9월 중순에 걸쳐 일어나는데, 주산란시기는 해수수온이 22 \circ C 이상으로 상승하는 6, 7월이다. 따라서 1년에 산란 (번식)시기가 한번 일어나고 있음을 알 수 있다. 생식 주기는 초기활성기 (1-2월), 후기활성기 (2-4월), 완숙기 (4-9월), 산란기 (5-9월) 그리고 퇴화 및 비솰성기 (6-12월)의 연속적인 5단계로 구분할 수 있었다. 재생산에 가담할 수 있는 암, 수개체들의 군성숙도(%)를 조직학적으로 조사한 결과, 각장 3.5-3.9cm 범위의 개체는 55.5%이었고, 5cm 이사인 개체들은 재생산에 100% 참여하였다. 본 종의 암, 수개체들은 만 1년부터 재생산에 가담하는 것으로 추정된다.

  • PDF