Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.3.435

Effect of Treadmill Exercise Training on the Expression of PGC-1α, GLUT-1, Tfam Proteins and Antioxydent Ezymes in Brain of STZ-Induced Diabetic Rats  

Park, Noh-Hwan (Exercise Biochemistry Laboratory, Korea National Sport University)
Lee, Jin (Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University)
Jung, Kook-Hyun (Exercise Biochemistry Laboratory, Korea National Sport University)
Choi, Bong-Am (Collage of Golf, Dae-Gu University)
Jang, Hyung-Chae (Exercise Biochemistry Laboratory, Korea National Sport University)
Lee, Suk-In (College of Physical Education, Chung-Ang University)
Lee, Dong-Soo (College of Physical Education, Chung-Ang University)
Cho, Joon-Yong (Exercise Biochemistry Laboratory, Korea National Sport University)
Publication Information
Journal of Life Science / v.21, no.3, 2011 , pp. 435-443 More about this Journal
Abstract
The purpose of this study is to identify the effects of exercise training [ET, 10~18 m/min (speed), 20~30 min (exercise duration)/a day for 5 day/wk, 6 wk) on PGC-$1{\alpha}$, GLUT-1, Tfam, Cu,Zn-SOD and Mn-SOD proteins in brain of STZ-induced diabetic rats. The male Sprague-Dawley (SD) rats were single-injected intraperitoneally with 50mg/kg of streptozotocin (STZ) to produce STZ-induced diabetic rats. Rats were divided into 3 experimental groups with 8 rats in each group, as follows: (1) non-STZ group (n=8), (2) STZ-CON group (n=8), (3) STZ-EXE group (n=8). The results of this study suggest that i) serum glucose level was significantly reduced in STZ-EXE group compared with STZ-CON group (p<0.05), ii) PGC-$1{\alpha}$ (p<0.001), mtPGC-$1{\alpha}$ (p<0.001), GLUT-1 (p<0.001), and mtTfam (p<0.001) proteins in brain of STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group, iii) Cu,Zn-SOD (p<0.001) and Mn-SOD (p<0.01) proteins in the STZ-induced diabetic rats were significantly increased in STZ-EXE group compared with STZ-CON group. In conclusion, the findings of the present study reveal that treadmill exercise training increases brain GLUT-1 protein level possibly through up-regulation of PGC-$1{\alpha}$ and Tfam proteins which represent key regulatory components of stimulation of brain mitochondrial biogenesis. In addition, treadmill exercise training may prevent oxidative stress by up-regulation of Cu,Zn-SOD and Mn-SOD proteins in the STZ-induced diabetic rats.
Keywords
Treadmill exercise training; STZ-induced diabetic rat; PGC-$1{\alpha}$; GLUT-1; Tfam; Cu; Zn-SOD; Mn-SOD;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Rosen, P., P. P. Nawroth, G. King, W. Möller, H. J. Tritschler, and L. Packer. 2001. The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab. Res. Rev. 17, 189-212.   DOI
2 Sander, M. H. and A. Johan.2004. PGC-1$\alpha$: Turbocharging Mitochondria. Cell 119, 5-7.   DOI
3 Scarpulla, R. C. 2002. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286, 81-89.   DOI
4 Sen, C. K. 1995. Oxidants and antioxidants in exercise. J. Appl. Physiol. 79, 675-686.
5 Serradas, P., M. H. Giroix, C. Saulnier, M. N. Gangnerau, L. A. Borg, M. Welsh, B. Portha, and N. Welsh. 1995. Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of noninsulin-dependent diabetes. Endocrinol. 136, 5623-5631.   DOI
6 Takasu, N., I. Komiya, T. Asasa, Y. Nagasawa, and T, Yamada. 1991. Streptozotocin- and alloxan-induced $H_2O_2$ generation and DNA fragmentation in pancreatic islets. $H_2O_2$ as mediator for DNA fragmentation. Diabetes 40, 1141-1145.   DOI
7 Terada, S. and I. Tabata. 2004. Effects of acute bouts of running and swimming exercise on PGC-1alpha protein expression in rat epitrochlearis and soleus muscle. Am. J. Physiol. Endocrinol. Metab. 286, E208-216.
8 Reagan, L. P., N. Gorovits, E. K. Hoskin, S. E. Alves, E. B. Katz, C. A. Grillo, G. G. Piroli, B. S. McEwen, and M. J. Charron. 2001. Localization and regulation of GLUT${\times}$1 glucose transporter in the hippocampus of streptozotocin diabetic rats. Proc. Natl. Acad. Sci. USA 98, 2820-2825.   DOI
9 Jeong, L. G., J. H. Yoon, H. H. Lee, J. O. Kim, T. B. Sel, and M. J. Oh. 2007. Effect of exercise training on expression of GLUT 1 and GLUT 3 protein in the hippocampus of streptozotocin-induced diabetic rats. J. Korean Physical Edu. 46, 359-367.   과학기술학회마을
10 Kawamura, M., J. W. Heinecke, and A. Chait. 1994. Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide dependent pathway. J. Clin. Invest. 94, 771-778.   DOI
11 Larsson, N. G., J. Wang, H. Wilhelmsson, A. Oldfors, P. Rustin, M. Lewandoski, G. S. Barsh, and V. Clayton. 1998. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231-236.   DOI
12 Lee, S. Z., S. H. Park, and H. S. Lee. 2001. Chainges in vivo lipid peroxidation and antioxidant defense system in streptozotocin induced diabetic rats: a time course study. J. Korean Nutr. Soc. 34, 253-264.
13 Li, Z. G. and A. A. Sima. 2004. C-peptide and central nervous system complications in diabetes. Exp. Diabesity Res. 5, 79-90.   DOI
14 Luis, D. M., B. Lamvert, N. Sash, R. R. Ghazala, P. Norman, and A. F. Paul. 2001. Effect of streptozotocin-induced diabetes on glycogen resynthesis in fasted rats post-high-intensity exercise. Am. J. Physiol. Endocrinol. Metab. 280, E83-91.
15 Monsalve, M., Z. Wu, G. Adelmant, P. Puigserver, M. Fan, and B. M. Spiegelman. 2000. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol. Cell 6, 307-316.   DOI
16 Winder, W. W., E. B. Taylor, and D. M. Thomson. 2006. Role of AMP-activated protein kinase in the molecular adaptation to endurance exercise. Med. Sci. Sports Exerc. 38, 1945-1949.   DOI
17 Bossy-Wetzel, E., M. J. Barsoum, A. Godzik, R. Schwarzenbacher, and S. A. Lipton. 2003. Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr. Opin. Cell Biol. 15, 706-716.   DOI
18 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochem. 72, 248-254.   DOI   ScienceOn
19 Yang, W., J. Li, and S. Hekimi. 2007. A Measurable increase in oxidative damage due to reduction in superoxide detoxification fails to shorten the life span of long-lived mitochondrial mutants of Caenorhabditis elegans. Genetics 177, 2063-2074.   DOI   ScienceOn
20 West, I. C. Radicals and oxidative stress in diabetes. Diabet. Med. 17, 171-180.   DOI
21 Wu, Z., P. Puigserve, U. Andersson, C. Zhang, G. Adelmant, V. Mootha, A. Troy, S. Cinti, B. Lowell, R. C. Scarpulla, and B. M. Spiegelman. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115-124.   DOI
22 Norrbom, J., C. J. Sundberg, H. Ameln, W. E. Kraus, E. Jansson, and T. Gustafsson. 2004. PGC-1alpha mRNA expression is influenced by metabolic perturbation in exercising human skeletal muscle. J. Appl. Physiol. 96, 189-194.
23 Tsai, E. C., I. B. Hirsch, J. D. Brunzell, and A. Chait. 1994. Reduced plasma peroxyl radical trapping capacity and increased susceptibility of LDL to oxidation in poorly controlled IDDM. Diabetes 43, 1010-1014.   DOI
24 Muranyi, M., M. Fujioka, Q. He, A. Han, G. Yong, K. Csiszar, and P. A. Li. 2003. Diabetes activates cell death pathway after transient focal cerebral ischemia. Diabetes 52, 481-486.   DOI
25 Nishikawa, T., D. Edelstein, and M. Brownlee. 2000. The missing link: a single unifying mechanism for diabetic complications. Kidney Int. Suppl. 77, S26-30.
26 Park, S., J. S. Jang, D. W. Jun, and S. M. Hong. 2005. Exercise enhances insulin and leptin signaling in the cerebral cortex and hypothalamus during dexamethasone-induced stress in diabetic rats. Neuroendocrinol. 82, 282-293.   DOI
27 Patti, M. E., A. J. Butte, S. Crunkhorn, K. Cusi, R. Berria, S. Kashyap, Y. Miyazaki, I. Kohane, M. Costello, R. Saccone, E. J. Landarker, A. B. Goldfine, E. Mun, R. DeFronzo, J. Finlayson, C. R. Kahn, and L. J. Mandarino. 2003. Coordinated reduction of genes of oxidative metabolism in human with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc. Natl. Acad. Sci. USA 100, 8466-8471.   DOI
28 Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and B. Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829-839.   DOI
29 Puigserver, P. and B. M. Spiegelman. 2003. Peroxisome proliferator- activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24, 78-90.   DOI
30 Mootha, V. K., C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Pulgserver, E. Carlsson, M. Ridderstrale, E. Laurlla, N. Houstls, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, and L. C. Grouup. 2003. PGC-1, Lpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267-273.   DOI
31 Ceriello, A. 2000. Oxidative stress and glycemic regulation. Metabolism 49, 27-29.   DOI
32 Cotman, C. W. and C. Engesser-Cesar. 2002. Exercise enhances and protects brain function. Exerc. Sport Sci. Rev. 30, 75-79.   DOI
33 Daniel, P. K. and C. S. Richard. 2004. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 18, 357-368.   DOI
34 De Moraes, C., A. P. Davel, L. V. Rossoni, E. Antunes, and A. Zanesco. 2008. Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiol. 8, 12.   DOI
35 Duelli, R. and W. Kuschinsky. 2001. Brain glucose transporters: relationship to local energy demand. News. Physiol. Sci. 16, 71-76.
36 Endo, N., C. Emilio, M. Salvador, and O. C. Michele. 2004. Mitochondrial biogenesis as a cellular signaling framework. Biochem Pharmacol. 67, 1-15.   DOI
37 Garesse, R. and C. G. Vallejo. 2001. Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263, 1-16.   DOI
38 Hardie, D. G. 2004. AMP-activated protein kinase: a key system mediating metabolic responses to exercise. Med. Sci. Sports Exerc. 36, 28-34.   DOI
39 Jacobs, H. T. 2003. The mitochondrial theory of aging: dead or alive? Aging Cell 2, 9-10.   DOI
40 Hou, W. K., Y. X. Xian, L. Zhang, H. Lai, X. G. Hou, Y. X. Xu, T. Yu, F. Y. Xu, J. Song, C. L. Fu, W. W. Zhang, and L. Chen. 2007. Influence of blood glucose on the expression of glucose trans-porter proteins 1 and 3 in the brain of diabetic rats. Chin. Med. J. 120, 1704-1709.
41 Anabela, P. R. and M. P. Carlos. 2006. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicol. Appl. Pharmacol. 212, 167-178.   DOI
42 Atonetti, D. A., C. Reynet, and C. R. Kahn. 1995. Increased expression of mitochondrial-encoded genes in skeletal muscle of humans with diabetes millitus. J. Clin. Invest. 95, 1383-1388.   DOI
43 Baar, K., A. R. Wende, T. E. Jones, M. Marison, L. A. Nolte, M. Chen, D. P. Kelly, and J. O. Holloszy. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB. J. 16, 1879-1886.   DOI
44 Beauquis, J., P. Roig, F. Homo-Delarche, A. De Nicola, and F. Saravia. 2006. Reduced hippocampal neurogenesis and number of hilar neurones in streptozotocin-induced diabetic mice: reversion by antidepressant treatment. Eur. J. Neurosci. 23, 1539-1546.   DOI