• 제목/요약/키워드: 미생물 호흡

검색결과 133건 처리시간 0.028초

광합성세균 Rhodopseudomonas gelatinosa 의 시토크롬 c 산화효소의 정제 및 특성 (Purification and Characterization of Cytochrome c Oxidase from Photosynthetic Bacterium, Rhodopseudomonas gelatinosa)

  • 강대길;최원기
    • 미생물학회지
    • /
    • 제30권2호
    • /
    • pp.101-107
    • /
    • 1992
  • 화학 영양성으로 배양한 Rps. gelatinosa 에서 2회의 시토크롬 c 친화성 크로마토그래피와 DEAE-Sephacel 이온 교환 크로마토그래피 등 3 단계의 크로마토그래피를 수행하여 시토로콤 c 산화효소를 정제하였다. 정제된 시토크롬 c 산화효소는 Sephacryl S-300 에 의한 분자걍이 약 110,000 Da 이고 SDS-gel 전기영동에 의한 분자량이 약 52.000 Da 으로써 이량체일 것으로 보인다. 전제된 시토크롬 c 산화효소는 온도데 매우 불안정하고 말 심장 시토크롬 c 를 기질로 사용했을때 Km 값은 $20\mu$M, Vmax 값은 44unit/mg prot. 이며 pH 6.4 의 효소방응 최적 pH 와 25.deg.C 의 최적 온도를 보였다. 환원된 시토크롬 c 산화효소는 554, 523, 421 nm 에서 .alpha., .betha. soret 흡수대를 보였고 chromatophore 에서와 마찬가지로 KCN 과 $NaN_{3}$ 에 의해서는 효소 활성도가 저해를 받았지만 CO 와 antimycin A, myxothiazol 에 의해서는 효소 활성도가 저해를 받지 않았다. 빛을 에너지원으로 배양하거나 또는 화학영양성으로 배양하든지 모두 시토크롬 c-551 이 생성되었고 환원된 시토크롬 c-551 은 시토크롬 c 산화효소에 의해 산화되었다. 시토크롬 c-551 을 기질고 이용하였을 때 시토크롬 c 산화효소의 Km 값은 $26\mu$M 이었고 Vmax 값은 31.unit./mg prot. 로써 말심장의 시토크롬 c 를 기질로 이용할때 보다 오히려 낮았다. 이와 같은 결과로 보아 화학 영양성은 배양한 Rhodopseudomonas gelatinosa 에서 호흡에 의한 전자전달은 시토크롬 c-551 이 시토크롬 $bc_{1}$ 복합체로 부터 전자를 받아 b-형 시토크롬 c 산화효소에 전자를 전달해 주고 최정적으로 산소를 환원시킬 것으로 생각된다.

  • PDF

안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용 (Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines)

  • 박재은;이병태;이상우;김순오;손아정
    • 대한환경공학회지
    • /
    • 제39권5호
    • /
    • pp.265-276
    • /
    • 2017
  • 폐광산은 방치된 광미 등으로 인하여 주변환경에 복합적인 중금속 오염을 야기한다. 이를 방지하기 위하여 국내에서는 1990년대 중반부터 석회석 등의 안정화제와 복토를 이용한 안정화 공법을 기반으로 토양개량사업이 시행 중이다. 복원된 토양의 상부에서는 작물의 재배로 인해 중금속이 고정된 안정화 층이 지화학적 변화를 겪게 되며 이에 따른 중금속의 용출 및 이동이 가능하므로 토양개량사업을 마친 토양에 대한 질 평가 등의 사후 관리는 반드시 필요하다. 토양의 질 평가를 하기 위해서는 이화학적 분석 또는 생물학적인 분석을 개별적으로 하기보다는 이들을 결합한 종합적인 분석이 필요하며 이를 통해 토양의 생태기능상태(ecological functional state)를 평가할 수 있다. 본 연구에서는 대상시료로 경상북도 봉화군 풍정 광산, 전라남도 광양시 점동 광산, 충청남도 서산시 서성 광산 인근 안정화 처리 토양과 안정화 처리가 되지 않은 오염, 비오염 토양을 선정하였다. 토양의 이화학적 성질인 pH, CEC, LOI와 중금속 농도를 측정하였고, 미생물 효소활성도와 비소환원유전자를 정량하였다. 다변량 통계분석을 바탕으로 모든 데이터를 분석하여 토양 생태기능상태를 평가하였다. 안정화 심도 토양과 상부복토, 하부오염토 간의 상관관계를 확인한 결과, 안정화 심도 토양에서 중금속의 농도가 높게 측정되었다. 그리고 풍정광산에서는 안정화 처리 심도 토양이 하부오염토와 유사한 특성을, 점동, 서성 광산에서는 안정화 심도 토양이 상부복토와 유사한 특성을 나타내었는데 이는 점동, 서성 광산 주변 상부복토의 생태기능상태가 좋지 않을 수 있음을 시사한다.

산업용 효모 Hybrid의 선별을 위한 우성선별표지로서의 Aureobasidin A 내성유전자의 이용 (The Use of Aureobasidin A Resistant Gene as the Dominant Selectable Marker for the Selection of Industrial Yeast Hybrid)

  • 전한택;박은미;김근
    • 한국미생물·생명공학회지
    • /
    • 제39권2호
    • /
    • pp.111-118
    • /
    • 2011
  • 교배와 원형질체 융합을 통한 배수체인 야생형 산업균주의 개발을 위하여, hybrid의 선별표지로서 우성의 선별표지인 aureobasidin A 내성이 사용될 수 있는 지를 알아보고자 하였다. 선별배지에서 aureobasidin A의 최적농도는 야생형 균주인 경우 SD와 YPD 배지에서는 0.5 ${\mu}g$/mL 이상이었고, SG와 YPG에서는 0.2-0.3 ${\mu}g$/mL 이었다. 한편 호흡결여돌연변이주는 야생형 균주보다 훨씬 높은 농도의 aureobasidin A에도 내성이 있음을 나타내었다. 우리는 K114/YIP균주의 전분분해 능력이 배수체 야생형 산업 균주에 전달 될 수 있는지를 이 방법을 통하여 관찰하였다. 반수체 영양요구성 균주 K114/YIP에 aureobasidin에 대한 내성을 부여하는 pAUR112가 도입된 균주와 야생형 균주 KL 혹은 C6와의 rare-mating 후 aureobasidin A 함유 배지에서 성장한 hybrid를 분리할 수 있었다. Hybrid는 전분분해 능력을 함유하고 있었을 뿐 아니라 두 양친의 특성을 동시에 지녔으며, 전자현미경 관찰 결과에서도 hybrid는 양친주의 특성을 모두 갖는 것으로 나타났다.

Phenol 폐수(廢水)의 처리공법(處理工法) 개발(開發)에 관한 연구(硏究) (A Study on the Development of a Treatment Process for Phenolic Wastewaters)

  • 조광명
    • 대한토목학회논문집
    • /
    • 제2권1호
    • /
    • pp.19-31
    • /
    • 1982
  • 본(本) 연구(硏究)는 여과막(濾過膜) 활성(活性)슬러지공법(工法)에 의하여 독성(毒性)이 있는 phenol 폐수(廢水)의 처리가능성(處理可能性)을 조사하기 위하여 실시되었다. 합성(合成) phenol 폐수(廢水)를 4 기(期)에 걸쳐 연속주입 하면서 실시한 실험결과에 의하면 과거의 연구결과와 마찬가지로 합성섬유(合成纖維)담요가 내구성(耐久性), SS 제거율(除去率), 폐수투과율(廢水透過率) 등(等)을 고려할 때 여과막(濾過膜)으로서 알맞는 재료(材料)이며, 반응조(反應槽)의 수온(水溫)이 $10{\sim}15^{\circ}C$이하로 장시간 지속되면 여과막(濾過膜)의 폐수투과율(廢水透過率) 크게 감소된다는 것이 확인되었다. 여과막(濾過膜) 활성(活性)슬러지공법(工法)에서는 반응조내(反應槽內)의 미생물(微生物) 농도(濃度)가 높게 유지될 수 있어 높은 유기물부하(有機物負荷)서도 F/M 비(比)가 낮게 되므로 높은 phenol 제거효율(除去效率)을 얻을 수 있다. 본 연구에서는 반응조가 정상적으로 운영된 경우 $63{\sim}468mg/{\ell}$의 유입수(流入水) phenol 농도에서 $0.1mg/{\ell}$ 이하의 유출수(流出水) phenol 농도를 보였다. 또한 본(本) 연구(硏究)에서는 미생물(微生物) 성장계수(成長係數)가 제거(除去)된 COD 1 kg 당 0.035~0.160 kg SS로서 다른 활성(活性)슬러지공법(工法)에 비하여 매우 낮았으며 슬러지의 호기성(好機性) 소화시(消化時) 내호흡율(內呼吸率)의 온도보정계수(溫度補正係數)는 1.021로 관측되었다.

  • PDF

하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력 (Anaerobic Mineralization of Organic Matter and Sulfate Reduction in Summer at Ganghwa Intertidal Flat, Korea)

  • 현정호;목진숙;조혜연;조병철;최중기
    • 한국습지학회지
    • /
    • 제6권1호
    • /
    • pp.117-132
    • /
    • 2004
  • 갯벌이나 연안습지의 생태구조 및 생지화학적 물질 순환을 이해하기 위해서는 유기물 분해기능 평가 및 분해경로에 대한 연구가 필수적으로 진행되어야 함에도 불구하고 국내에는 이에 대한 연구가 거의 없다. 본 논문에서는 하계 강화도 남단의 갯벌에서 미생물에 의한 혐기성 유기물 분해정도를 파악하고, 황산염 환원을 통한 유기물 분해경로의 정량적 중요성을 평가하고자 하였다. 유기물 분해율은 깊이 6 cm 이내에서 $41.9{\sim}89.4mmol\;m^{-2}d^{-1}$의 범위로 나타났으며, 이를 강화도 갯벌의 전체 면적(약 $300km^2$)으로 환산할 경우, 하루에 216 ton의 유기물이 혐기적 과정을 통해 분해되는 것으로 계산되었다. 이러한 결과는 하구갯벌인 강화도 갯벌의 유기물 분해능이 생산력이 높은 염습지의 유기물 분해능에 비해 결코 뒤지지 않음을 보여주는 결과이다. 한편, 인위적으로 유기물(acetate)을 공급하였을 경우 유기물 분해율이 약 2배~5배의 증가율을 나타냈다. 이러한 결과는 미생물의 유기물 분해가 이용 가능한 유기물의 공급 부족에 의해 제한되고 있음을 의미한다. 한편 깊이 6 cm 이내에서 적분한 황산염 환원율은 $20.7{\sim}45.1mmol\;SO{_4}^{2-}m^{-2}d^{-1}$의 범위로 나타났으며, 전체 혐기성 유기물 분해의 대부분을 차지하였다. 이러한 연구결과는 황산염 환원력의 과도한 증대가 향후 갯벌 주변 생태계의 생물 다양성 감소로 이어질 수 있음을 시사하는 것이다.

  • PDF

우포늪, 순천만, 서해 갯벌에서부터 분리한 황산염/황-환원 세균의 특성 분석 (Isolation and Characterization of Sulfate- and Sulfur-reducing Bacteria from Woopo Wetland, Sunchun Bay, and Tidal Flat of Yellow Sea)

  • 김소정;민의기;홍희지;김종걸;정만영;차인태;이성근
    • 미생물학회지
    • /
    • 제50권3호
    • /
    • pp.254-260
    • /
    • 2014
  • 황화합물은 혐기성환경에서 혐기성호흡을 위한 매우 중요한 전자수용체이다. 본 연구를 통하여 한국의 다양한 습지에서 배양을 통한 황산염/황-환원세균의 특성연구를 실시하였다. 이를 분리하기 위하여 혐기성 roll tube법을 통해 총 11개의 순수 배양체를 확보하였다. 16S rDNA를 이용한 계통분석 및 상동성 분석을 실시하여 Desulfovibrio 속의 세균 8종, Sulfurospirillum 속의 세균 2종, Desulfitobacterium 속의 세균 1종을 얻을 수 있었다. 이들 황산염/황-환원세균은 모두 lactate와 pyruvate를 전자공여체로 이용하였으며, sulfite and thiosulfate를 전자수용체로 이용할 수 있었다. 앞으로, 다양한 전자공여체와 배양조건을 통하여 유용한 절대혐기성 황산염/황-환원세균의 생물자원 확보에 기여할 것으로 기대된다.

소양호에서 활성세균수의 계절적.수직적 변화 (The Seasonal Variation of Active Bacterial Abundance in Lake Soyang)

  • 석정현;홍선희;김범철;안태석
    • 미생물학회지
    • /
    • 제37권1호
    • /
    • pp.80-84
    • /
    • 2001
  • 소양호에서 총세균수와 활성세균수의 계절적.수직적 변화를 측정하였다. 총세균수는 AODC방법을, 활성세균수 측정은 전자전달계를 이용한 호흡활성도 측정인 CTC 방법을 이용하였다. 조사기간 동안 총세균수는 $2.1{\times}10^5 ~ 3.1{\times}10^6 $ cells.$ml^{-1}$이었으며 활성세균수는 $1.8{\times}10^4 ~ 8.0{\times}10^5 $ cells..$ml^{-1}$로 나타났고, 총세균수에 대한 활성세균수의 비율은 3.7~44.2%이였다. 수직 분포를 보면 총세균수는 수온약층에 따라 그 수가 변화하였으나, 활성세균의 수는 큰 변화가 없었다. 총세균수의 값과 $\beta$-glucosidase 활성도의 간이 유사한 1999년 8월과 9월의 조사결과에서 $\beta$-glucosidase specific activity를 활성세균의 값에서 구한 결과, 9월의 활성이 8월보다 약 6.7배 높았다. 이 활성세균의 측정으로 수중생태계에서 세균의 역할에 대한 새로운 정보를 얻을 수 있다.

  • PDF

이탄습지 공극수내 용존유기탄소와 페놀계열 물질의 변화도 (Variations of DOC and Phenolics in Pore-water of Peatlands)

  • ;김선영;강호정
    • 생태와환경
    • /
    • 제35권4호통권100호
    • /
    • pp.306-311
    • /
    • 2002
  • 습지내의 용존유기탄소의 함량과 구성은 이차생산, 다양한 생지화학적 반응, 그리고 수생태계의 기능에 중요한 영향을 미친다. 본 연구에서는 북구이탄습지 (bog, fen, swamp)의 공극수내의 용존유기탄소와 페놀계열 물질의 농도를 1997년도에 1년에 걸쳐 조사하였다. 일반적인 미생물의 활성 (토양 호흡도)와 페놀산화효소의 활성도 측정하여, 용존유기탄소와 페놀계열 물질의 변화에 대한 기작을 밝히고자 했다 용존유기탄소 농도는 25.5-45.4 (bog), 29.2-71.4 (fen), 13.5-87.6 (swamp) mg/L를 보였고, 페놀계열 물질의 경우에는 13.3-45.4 (bog),7.6-29.5 (fen),4.9-30.8 (swamp) mg/L의 변화정도를 보였다. Swamp에서의 계절적인 변화양상을 살펴보면, 낙엽생산이 용존유기탄소의 변화에 많은 영향을 미침을 알 수 있었다 Bog에서의 미생물활성도와 페놀산화효소의 활성이 가장 낮게 나타났는데 이것이 bog내의 높은 페놀계열물질의 농도를 야기시킨 것으로 사료된다. 본 연구의결과는 습지내 용존유기탄소의 양 뿐만 아니라 그 화학적인 구성이 습지 생지화학에서 중요함을 보여주었다.

퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할 (Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments)

  • 최정현;박석순
    • 생태와환경
    • /
    • 제37권4호통권109호
    • /
    • pp.436-447
    • /
    • 2004
  • 습지를 규정하는 주요한 특징의 하나인 습지식물은 장기간의 침수로 인해 혐기성 상태로 존재하는 습지 퇴적물에서 생존을 위한 특별한 적응방법을 발달시켰다. 식물체내에 넓게 분포하고 있는 다공성의 세포는 공기중의 산소를 뿌리로 운반하기 위한 통로로 작용하며, 농도차이에 의한 확산과 압력차이에 의한 대류에 의하여 산소가 운반되어진다. 이러한 식물체 내에서의 산소이동은 식물이 혐기성 퇴적물 속으로 뿌리를 내리고 생존하게 하는 주요한 기작이 된다. 뿌리로 이동되어진 산소는 혐기성 퇴적물로 확산되어져서 뿌리주변의 퇴적물은 산화상태로 변화시키고, 뿌리의 호흡, 미생물의 호흡, 미생물에 의한 유기물 분해반응을 촉진시키게 된다. 또한 습지식물은 생장에 필요한 수분을 뿌리로 흡수하며, 이는 지표수와 퇴적물내 공극수가 뿌리주변으로 이동하게 되는 추진력이 된다. 습지 퇴적물은 식물의 사체에서 기인하는 유기물에 의해 수리학적 전도도가 작아서 퇴적물내 물의 움직임이 미미하나, 식물에 의한 물의 흡수는 퇴적물내 물의 움직임을 촉진시키게 된다. 이러한 식물의 특별한 적응기작은 해부학적, 형태학적, 생리학적으로 많은 연구가 수행되어져 왔으나, 이러한 적응기작들에 퇴적물내 생지화학적 반응에 미치는 영향에 대한 연구는 미비한 수준에 머물러있다. 퇴적물내 생지화학적 반응들은 수체에서 유입된 미량 오염물질의 이동 및 변형과정에 영향을 미치게 되므로 식물의 작용에 의한 생지화학적 반응의 변화들은 미량 오염물질의 거동에 영향을 미치게 되며 나아가 수자원과 수질 생태계에 영향을 초래하게 된다. 따라서 식물의 존재와 성장에 따른 퇴적물내 생지화학적 반응의 변화는 생태학적 환경에서 습지의 중요성을 인식하는데 필요한 연구과제라 사료된다. 난이도, 변별도 등에서 유사하므로 당분간 계속 사용하여도 될 것이다. 따른 변화(變化)는 볼 수 없었다. ATP 첨가(添加)로서는 0.30mM의 농도(濃度)에서 0.15 mM의 농도(濃度)에 비(比)하여 Young 율(率)이 낮았다. 3) 외경동맥(外經動脈)의 종절편(縱切片)의 Young 율(率)은 생리적식염수(生理的食鹽水)에 둔 군(群)에서는 15분(分), 45분(分) 및 75분(分)에서 각각(各各) 2.12, 2.48 및 $2.46{\times}10^7 dyne/cm^2$으로서 실험초기(實驗初期)에 비(比)하여 후기(後期)에서 Young 율(率)이 약간(若干) 높은 경향(傾向)을 나타내었고, 이러한 경향(傾向)은 ATP의 첨가(添加)로서도 비슷하였다.수량(收量)과 자실체형성(子實體形成) 소요일(所要日)의 관점(觀點)에서 보면 C/N율(率) 30.46이 어느정도 적당(適當)한 것 같다. 4. Thiamine $50{\mu}g%,\;KH_2PO_4$ 0.2%, $MgSO_4{\cdot}7H_2O$$0.02{\sim}0.03%$일때 균사(菌絲)와 자실체(子實體) 생육(生育)이 우수(優秀)하였으며 미량원소(微量元素)로서는 $FeSO_4{\cdot}7H_2O$,\;ZnSO_4{\cdot}7H_2O$$MnSO_4{\cdot}5H_2O$가 공존(共存)하면 생육촉진(生育促進)의 상승효과(相乘效果)가 인정되었으나 3이원소(元素)중 Mn이 결핍(缺乏)하면 균사(菌絲)와 자실체(子實體)의 생육(生育)이 다소 저하되었다. 이들 염류(鹽類)의 최적농도(最適濃度)는 각각 0.02mg%이었다. 5.

BFB에 의한 분뇨처리(糞尿處理)의 연구(研究) (A Study on the Nightsoil Treatment by BFB)

  • 김환기;이영동
    • 대한토목학회논문집
    • /
    • 제3권2호
    • /
    • pp.1-15
    • /
    • 1983
  • 본(本) 논문(論文)에서는 활성(活性)슬러지법(法)에 의(依)한 분뇨처리방법(糞尿處理方法) 대신 BFB를 이용(利用)한 저희석(低稀釋) 분뇨처리(糞尿處理)의 가능성(可能性)과 수학적(數學的) 해석(解析)을 시도(試圖)하였다. 실험(實驗)은 BFB의 메디아로써 폴리프로필렌계(系) 합성섬유(合成纖維)인 부직포(不織布)를 사용(使用)하였으며, 수온(水溫) $20^{\circ}C$에서 F/M비(比) 및 분뇨(糞尿)의 희석비(稀釋比)를 0.12~0.37/day와 2~10배(倍)로 변화(變化)시켜 연속식(連續式) 반응조(反應槽)에 의해 수행(修行)되었다. 여기서 얻어진 결과(結果)로는 저희석(低稀釋) 분뇨처리(糞尿處理)에 대(對)한 BFB의 적용(適用)은 다른 생물학적(生物學的) 처리법(處理法)에 비(比)해 더 좋은 효과(効果)를 얻을 수 있는 것으로 나타났는데 본연구(本硏究)에서 나타난 분뇨(糞尿)의 최적희석비(最適稀釋比)는 5배(倍)로 나타났고, 그 때의 최적(最適) 체류시간(滯留時間)은 17시간(時間)으로 나타났다. 따라서 반응조(反應槽)의 체적(體積)은 70%, 희석수(稀釋水)는 80%까지 절감(切減)할 수 있는 것으로 계산(計算)되었다. 또 완전혼합(完全混合) 활성(活性)슬러지법(法)에 적용(適用)되는 수학적(數學的) 해법(解法)으로도 BFB의 실험결과(實驗結果)를 해석(解析)할 수 있었다. $20^{\circ}C$에서 McKinney 식(式)($K_m$)과 Eckenfelder 식(式)($K_e$)을 이용(利用)하여 구(求)한 유기물(有機物) 제거속도(除去속도(速度))는 1.784/hr와 $2.0{\times}10^{-3}l/mg{\cdot}day$이었으며, 다른 방법(方法)에 비(比)해 유기물(有機物) 제거(除去)가 빠른 속도(速度)로 진행(進行)되었다. 미생물(微生物) 번식계수(繁殖係數)($a_5$), 내호흡(內呼吸) 계수(係數)(b), 미생물(微生物) 합성(合成)에 필요(必要)한 요소(酸素) 요구율(要求率)($a{_5}^{\prime}$) 및 내호흡(內呼吸)에 필요(必要)한 산소(酸素) 요구율(要求率)(b')은 각각(各各) 0.349, 0.0237/day, 0.495와 0.0336으로 계산(計算)되었다.

  • PDF