• Title/Summary/Keyword: 미생물 정화

Search Result 236, Processing Time 0.029 seconds

Microbial Community Analysis in the Wastewater Treatment of Hypersaline-Wastewater (고농도 염분폐수의 정화능이 우수한 기능성 미생물 커뮤니티의 군집 분석)

  • Lee, Jae-Won;Kim, Byung-Hyuk;Park, Yong-Seok;Song, Young-Chae;Koh, Sung-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.377-385
    • /
    • 2014
  • In this study, a wastewater treatment system for hypersaline wastewater utilizing the Hypersaline Wastewater Treatment Community (HWTC) has been developed. The hypersaline wastewater treatment efficiency and microbial community of the HWTC were investigated. The average removal efficiencies of chemical oxygen demand were 84% in an HRT of 2.5 days. Microbial community analysis, by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments and 16S rRNA gene clone library, revealed community diversity. The 16S rRNA gene analysis of dominant microbial bacteria in 4% hypersaline wastewater confirmed the presence of Halomonas sp. and Paenibacillus sp. Phylogenetic analysis suggested that the taxonomic affiliation of the dominant species in the HWTC was ${\gamma}$-proteobacteria and firmicutes. These results indicate the possibility that an appropriate hypersaline wastewater treatment system can be designed using acclimated sludge with a halophilic community.

Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes (방사성 폐기물의 생물정화를 위한 극한세균 데이노코쿠스 라디오두란스의 연구적 고찰)

  • Jeong, Sun-Wook;Choi, Yong Jun
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • Increasing concerns on radioactive wastes have drawn much attention on the development of remediation technologies. Massive amounts of radioactive wastes generated from hospital and nuclear power plants were exposed to our environment. Although physicochemical removal methods were developed, an eco-friendly remediation method has not yet been demonstrated. Recently, an extremophilic bacterium has received much attention due to their extraordinary characteristics. Among them, Deinococcus radiodurans (D. radiodurans) strain was regarded as the best host organism for the removal of radioactive heavy metals and radionuclides, because of their superb characteristics like tolerance against the high level of radioactivity. In this article, we briefly introduced the extraordinary nature of D. radiodurans and also discussed the potential use of D. radiodurans strain for the removal of radioactive wastes.

유류오염 방제에 생물정화제제 형식승인제도 도입

  • Yun, Ju-Yong
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.37 no.5
    • /
    • pp.22-28
    • /
    • 2008
  • 바다에 유출된 기름으로 오염된 지역의 친환경적인 방제를 위하여 기름분해 미생물을 이용하는 생물정화기술을 소개하고, 해양환경관리법 시행('08.1.21)으로 방제약제에 새로 추가된 생물정화제제의 성능시험기준 및 검정기준 등 형식승인절차를 기술하였다.

  • PDF

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects (중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망)

  • Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.4
    • /
    • pp.399-422
    • /
    • 2020
  • Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environment-friendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growth-promoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

Efficient Clean-up of Oil Spilled Shorelines Using the Compressed Air Jet System and Concomitant Microbial Community Analysis (압축공기 분사시스템을 이용한 유류오염 해안의 효율적 정화 및 이에 따른 미생물군집분석)

  • Chang, Jae-Soo;Kim, Kyung Hee;Lee, Jae Shik;Ekpeghere, Kalu I.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.353-359
    • /
    • 2013
  • The objectives of this study were to investigate effectiveness of the Compressed Air Jet (CAJ) System for cleaning up shorelines contaminated with crude oils and to examine effects of the system on total petroleum hydrocarbon (TPH) removal and microbial community changes before and after remediation of the oil-contaminated shorelines. These data will lead to better understanding of optimized remediation process. About 66% of TPH reduction was observed when the contaminated site was treated with the CAJ System 2, 3, 4, and 5 times. This treatment system was more efficient than the seawater pumping system under similar treatment conditions (by 40%). By the way, little oil degrader communities were observed despite a potential function of the air jet system to stimulate aerobic oil degraders. The apparent low population density of the oil degraders might be as a result of low concentration of TPH as a carbon source and limiting nutrients such as nitrogen and phosphorus. It was proposed that the CAJ System would contribute significantly to removal of residual oils on the shorelines in combination with addition of these limiting nutrients.

Evaluation of Purification Capacity of Vegetable Lactobacillus fermentum Culture System in Closed Environmental Waste Water (식물성 유산균 혼합물을 활용한 환경 폐수의 정화능력 평가)

  • Lee, Deuk Sik;Kim, Nam Kyun;Shim, Sooyong;Lee, Dong Jin;Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.22-27
    • /
    • 2011
  • Changes in total nitrogen (T.N.) and total phosphate (T.P.) content in environmental waste water upon the reaction of biological purifying reagents were measured and the reaction rate was evaluated. The purification capacity of two biological purifying reagents composed of vegetable Lactobacillus fermentum (V.L.F.), Saccharomyces cerevisiae(S.C), and Bacillus subtilis(B.S.) were evaluated and compared with that of commercial water purification system operating by local government. After 18days of reaction, the mixture of V.L.F. and S.C. showed dramatic decrease of T.N.(36.21% of the initial value). The mixture of V.L.F., S.C., and B.S. showed faster reaction rate to decrease T.P. compared with that of the mixture of V.L.F. and S.C. The reaction constant of mixture of V.L.F. and S.C. was estimated to be 0.178 $day^{-1}$ by the curve fitting of the data of changes in T.N. during the reaction.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

저수지 유입부에 조성한 저류지의 수질개선효과 및 미생물학적 특성

  • 남귀숙;김형중;이광식;손형식;손홍주;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.414-417
    • /
    • 2003
  • 유역의 경사가 비교적 급하고, 소규모 축산농가의 미처리된 축산폐수 및 농경지 배수, 산재된 마을하수 등 비점오염원의 유출이 강우시 집중적으로 이루어지는 중산간 농업용 저수지의 수질개선을 위한 공법으로 부영양화된 충남 아산 마산저수지의 유입부에 조성한 저류지를 이용한 수질개선효과 및 물질분해자로서 미생물학적 특성을 2000년부터 2002년까지 3년간 연구함으로서 향후 유사한 농업용저수지의 수질개선 방안으로 실용화 가능성을 모색하고자 하였다. 그 결과 수질정화효과는 총질소와 총인 등 영양염류의 정화효과가 비교적 우수하게 나타났으며, 유기오염물질로서 BOD, COD, SS 등은 평균 수질정화효과는 (-)의 값을 보여주었으나, 강우기에는 정화효율이 높게 나타났다 또한, 저류지의 물질 침전기능 외 오염물질의 활발한 분해작용을 살펴보고자 세균 분포 특성을 조사한 결과 유입수와 저류지, 저수지 각각의 수체에서 조사된 총세균수 및 총세균수에 대한 진정세균수의 비율이 유입수<저류지<유출수의 순으로 나타나 저류지의 유기물질 분해 활성이 높음을 보여주고 있다. 따라서 저수지 유입부에 조성한 저류지의 수질개선효과는 강우시 입자성 유기물질의 효과적 제거 뿐만아니라 영양염류의 제거효과, 특히 질소의 제거효과가 높은 정화기구로서 설치비용이 적고, 유지관리가 간단한 특성을 살려 유사한 중규모 농업용저수지의 수질개선 기법으로 널리 활용할 가치가 있음으로 사료된다.

  • PDF

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.