Browse > Article
http://dx.doi.org/10.14478/ace.2017.1003

Research Perspective of an Extremophilic Bacterium, Deinococcus radiodurans on Bioremediation of Radioactive Wastes  

Jeong, Sun-Wook (School of Environmental Engineering, University of Seoul)
Choi, Yong Jun (School of Environmental Engineering, University of Seoul)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 133-140 More about this Journal
Abstract
Increasing concerns on radioactive wastes have drawn much attention on the development of remediation technologies. Massive amounts of radioactive wastes generated from hospital and nuclear power plants were exposed to our environment. Although physicochemical removal methods were developed, an eco-friendly remediation method has not yet been demonstrated. Recently, an extremophilic bacterium has received much attention due to their extraordinary characteristics. Among them, Deinococcus radiodurans (D. radiodurans) strain was regarded as the best host organism for the removal of radioactive heavy metals and radionuclides, because of their superb characteristics like tolerance against the high level of radioactivity. In this article, we briefly introduced the extraordinary nature of D. radiodurans and also discussed the potential use of D. radiodurans strain for the removal of radioactive wastes.
Keywords
Deinococcus radiodurans; radioactive waste; bioremediation; antioxidation; DNA repair;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. O. Buesseler, S. R. Jayne, N. S. Fisher, I. I. Rypina, H. Baumann, Z. Baumann, C. F. Breier, E. M. Douglass, J. George, A. M. Macdonald, H. Miyamoto, J. Nishikawa, S. M. Pike, and S. Yoshida, Fukushima-derived radionuclides in the ocean and biota off Japan, Proc. Natl. Acad. Sci., U. S. A., 109, 5984-5988 (2012).   DOI
2 F. F. Evans, S. Rosado, G. V. Sebastian, R. Casella, PLOA Machado, C. Holmstrom, S. Kjelleberg, J. D. Van Elsas, and L. Seldin, Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms, FEMS Microbiol. Ecol., 49, 295-305 (2004).   DOI
3 S. K. Brar, M. Verma, R. Y. Surampalli, K. Misra, R. D. Tyagi, N. Meunier, and J. F. Blais, Bioremediation of hazardous wastes: A review, Pract. Period. Hazard. Toxic Radioact. Waste Manag., 10, 59-72 (2006).   DOI
4 J. Li, Q. Li, X. Ma, B. Tian, T. Li, J. Yu, S. Dai, Y. Weng, and Y. Hua, Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties, Int. J. Nanomed., 11, 5931-5944 (2016).   DOI
5 C. S. Misra, D. Appukuttan, V. S. Kantamreddi, A. S. Rao, and S. K. Apte, Recombinant D. radiodurans cells for bioremediation of heavy metals from acidic/neutral aqueous wastes, Bioeng. Bugs, 3, 44-48 (2012).
6 J. K. Fredrickson, H. M. Kostandarithes, S. W. Li, A. E. Plymale, and M. J. Daly, Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1, Appl. Environ. Microbiol., 66, 2006-2011 (2000).   DOI
7 R. B. Payne, D. M. Gentry, B. J. Rapp-Giles, L. Casalot, and J. D. Wall, Uranium reduction by Desulfovibrio desulfuricans strain G20 and a cytochrome c3 mutant, Appl. Environ. Microbiol., 68, 3129-3132 (2002)   DOI
8 D. R. Lovley and E. J. Phillips, Reduction of uraniumby Desulfovibrio desulfuricans, Appl. Environ. Microbiol., 58, 850-856 (1992).
9 G. M. Gadd, Bioremedial potential of microbial mechanisms of metal mobilization and immobilization, Curr. Opin. Biotechnol., 11, 271-279 (2000).   DOI
10 D. Prakash, P. Gabani, A. K. Chandel, Z. Ronen, and O. V. Singh, Bioremediation: a genuine technology to remediate radionuclides from the environment, Microb. Biotechnol., 6, 349-360 (2013).   DOI
11 J. R. Lloyd, J. Ridley, T. Khizniak, N. N. Lyalikova, and L. E. Macaskie, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flow-through bioreactor, Appl. Environ. Microbiol., 65, 2691-2696 (1999).
12 R. AP. Thomas, A. J. Beswick, G. Basnakova, R. Moller, and L. E. Macaskie, Growth of naturally occurring microbial isolates in metal-citrate medium and bioremediation of metal-citrate wastes, J. Chem. Technol. Biotechnol., 75, 187-195 (2000).   DOI
13 N. Yoshida and J. Kanda, Tracking the Fukushima radionuclides, Science, 336, 1115-1116 (2012).   DOI
14 V. Achal, X. Pan, and D. Zhang, Remediation of copper-contaminated soil by Kocuria flava CR1, based on microbially induced calcite precipitation, Ecol. Eng., 37, 1601-1605 (2011).   DOI
15 R. Pukall, A. Zeytun, S. Lucas, A. Lapidus, N. Hammon, S. Deshpande, M. Nolan, J. F. Cheng, S. Pitluck, K. Liolios, L. Pagani, N. Mikhailova, N. Ivanova, K. Mavromatis, A. Pati, R. Tapia, C. Han, L. Goodwin, A. Chen, K. Palaniappan, M. Land, L. Hauser, Y. J. Chang, C. D. Jeffries, E. M. Brambilla, M. Rohde, M. Goker, J. C. Detter, T. Woyke, J. Bristow, J. A. Eisen, V. Markowitz, P. Hugenholtz, N. C. Kyrpides, and H. P. Klenk, Complete genome sequence of Deinococcus maricopensis type strain (LB-34T), Stand. Genomic Sci., 4, 163-172 (2011).   DOI
16 M. Yuan, M. Chen, W. Zhang, W. Lu, J. Wang, M. Yang, P. Zhao, R. Tang, X. Li, Y. Hao, Z. Zhou, Y. Zhan, H. Yu, and M. Lin, Genome sequence and transcriptome analysis of the radioresistant bacterium Deinococcus gobiensis: Insights into the extreme environmental adaptations, PLoS One, 7, e34458 (2012).   DOI
17 A. Copeland, A. Zeytun, M. Yassawong, M. Nolan, S. Lucas, N. Hammon, S. Deshpande, J. F. Cheng, C. Han, R. Tapia, L. A. Goodwin, S. Pitluck, K. Mavromatis, K. Liolios, I. Pagani, N. Ivanova, A. Pati, A. Chen, K. Palaniappan, M. Land, L. Hauser, C. D. Jeffries, E. M. Brambilla, M. Rohde, J. Sikorski, R. Pukall, M. Goker, J. C. Detter, T. Woyke, J. Bristow, J. A. Eisen, V. Markowitz, N. C. Kyrpides, H. P. Klenk, and A. Lapidus, Complete genome sequence of the orange-red pigmented, radioresistant Deinococcus proteolyticus type strain (MRPT), Stand. Genomic Sci., 6, 240-250 (2012).   DOI
18 D. L. Vullo, H. M. Ceretti, E. A. Hughes, S. Ramyrez, and A. Zalts, Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E, Bioresour. Technol., 99, 5574-5581 (2008).   DOI
19 H. Guo, S. Luo, L. Chen, X. Xiao, Q. Xi, W. Wei, G. Zeng, C. Liu, Y. Wan, J. Chen, and Y. He, Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14, Bioresour. Technol., 101, 8599-8605 (2010).   DOI
20 X. Xu, L. Jiang, Z. Zhang, Y. Shi, and H. Huang, Genome sequence of a gamma- and UV-ray-resistant Strain, Deinococcus wulumuqiensis R12, Genome Announc., 1, e00206-13 (2013).
21 Y. Hu, X. Xu, P. Song, L. Jiang, Z. Zhang, and H. Huang, Draft genome sequence of Deinococcus xibeiensis R13, a new carotenoid-producing strain, Genome Announc., 1, e00987-13 (2013).
22 V. G. Stepanov, P. Vaishampayan, K. Venkateswaran, and G. E. Fox, Draft genome sequence of Deinococcus phoenicis, a novel strain isolated during the phoenix lander spacecraft assembly, Genome Announc., 2, e00301-14 (2014).
23 A. M. Earl, M. M. Mohundro, I. S. Mian, and J. R. Battista, The IrrE protein of Deinococcus radiodurans R1 is a novel regulator of recA expression, J. Bacteriol., 184, 6216-6224 (2002).   DOI
24 K. S. Nilgiriwala, A. Alahari, A. S. Rao, and S. K. Apte, Cloning and overexpression of alkaline phosphatase PhoK from Sphingomonas sp. strain BSAR-1 for bioprecipitation of uranium from alkaline solutions, Appl. Environ. Microbiol., 74, 5516-5523 (2008).   DOI
25 A. S. Madden, A. I. Swindle, M. J. Beazley, J. W. Moon, B. Ravel, and T. J. Phelps, Longterm solid-phase fate of co-precipitated U(VI)-Fe(III) following biological iron reduction by Thermoanaerobacter, Am. Mineral., 97, 1641-1652 (2012).   DOI
26 K. Hrynkiewicz, G. Dabrowska, C. Baum, K. Niedojadlo, and P. Leinweber, Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by Willows, Water Air Soil Pollut., 223, 957-968 (2012).   DOI
27 V. Achal, X. Pan, Q. Fu, and D. Zhang, Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J. Hazard. Mater., 201-202, 178-184 (2012).   DOI
28 P. Kanmani, J. Aravind, and D. Preston, Remediation of chromium contaminants using bacteria, Int. J. Environ. Sci. Technol., 9, 183-193 (2012).   DOI
29 K. Zahradka, D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A. B. Lindner, and M. Radman, Reassembly of shattered chromosomes in Deinococcus radiodurans, Nature, 443, 569-573 (2006).
30 E. Griffiths and R. S. Gupta, Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum, Int. Microbiol., 10, 201-208 (2007).
31 Y. Hua, I. Narumi, G. Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen, PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans, Biochem. Biophys. Res. Commun., 306, 354-360 (2003).   DOI
32 H. Lu, G. Gao, G. Xu, L. Fan, L. Yin, B. Shen, and Y. Hua, Deinococcus radiodurans PprI switches on DNA damage-response and cellular survival networks after radiation damage, Mol. Cell. Proteom., 8, 481-494 (2009).   DOI
33 J. R. Lloyd, P. Yong, and L. E. Macaskie, Biological reduction and removal of Np(V) by two microorganisms, Environ. Sci. Technol., 34, 1297-1301 (2000).   DOI
34 T. V. Khijniak, A. I. Slobodkin, V. Coker, J. C. Renshaw, F. R. Livens, E. A. Bonch-Osmolovskaya, N. K. Birkeland, N. N. Medvedeva-Lyalikova, and J. R. Lloyd, Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens, Appl. Environ. Microbiol., 71, 6423-6426 (2005).   DOI
35 L. E. Macaskie, R. M. Empson, A. K. Cheetham, C. P. Grey, and A. J. Skarnulis, Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline $HUO_2PO_4$, Science, 257, 782-784 (1992).   DOI
36 J. R. Lloyd, C. Leang, C., A. L. Hodges Myerson, M. V. Coppi, S. Cuifo, B. Methe, S. J. Sandler, and D. R. Lovely, Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens, Biochem. J., 369, 153-161 (2003).   DOI
37 J. R. Lloyd, J. Ridley, T. Khizniak, N. N. Lyalikova, and L. E. Macaskie, Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor, Appl. Environ. Microbiol., 65, 2691-2696 (1999).
38 N. N. Lyalikova and T. V. Khizhnyak, Reduction of heptavalent technetium by acidophilic bacteria of the genus Thiobacillus, Microbiology, 65, 468-473 (1996).
39 J. A. Imlay, Cellular defenses against superoxide and hydrogen peroxide, Annu. Rev. Biochem., 77, 755-776 (2008).   DOI
40 K. Satoh, T. Onodera, K. Omoso, K. T. Yano, T. Katayama, Y. Oono, and I. Narumi, Draft genome sequence of the radioresistant bacterium Deinococcus grandis, isolated from freshwater fish in Japan, Genome Announc., 4, e01631-15 (2016).
41 M. M. Cox, J. L. Keck, and J. R. Battista, Rising from the Ashes: DNA Repair in Deinococcus radiodurans, PLoS Genet., 6, e1000815 (2010).   DOI
42 D. Ghosal, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H. M. Kostandarithes, H. Brim, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, and M. J. Daly, How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress, FEMS Microbiol. Rev., 29, 361-375 (2005).
43 S. S. Desai, Y. S. Rajpurohit, H. S. Misra, and D. N. Deobagkar, Characterization of the role of the RadS/RadR two-component system in the radiation resistance of Deinococcus radiodurans, Microbiology, 157, 2974-2982 (2011).   DOI
44 M. J. Marshall, A. C. Dohnalkova, D. W. Kennedy, A. E. Plymale, S. H. Thomas, F. E. Loffler, R. A. Sanford, J. M. Zachara, J. K. Fredrickson, and A. S. Beliaev, Electron donordependent radionuclide reduction and nanoparticle formation by Anaeromyxobacter dehalogenans strain 2CP-C, Environ. Microbiol., 11, 534-543 (2009).   DOI
45 Y. Wang, Q. Xu, H. Lu, L. Lin, L. Wang, H. Xu, X. Cui, H. Zhang, T. Li, and Y. Hua, Protease activity of PprI facilitates DNA damage response: $Mn^{(2+)}$-dependence and substrate sequence-specificity of the proteolytic reaction, PLoS One, 10, e0122071 (2015).   DOI
46 M. Ludanyi, L. Blanchard, R. Dulermo, G. Brandelet, L. Bellanger, D. Pignol, D. Lemaire, and A. de Groot, Radiation response in Deinococcus deserti: IrrE is a metalloprotease that cleaves repressor protein DdrO, Mol. Microbiol., 94, 434-449 (2014).   DOI
47 A. Devigne, S. Ithurbide, T. C. Bouthier, F. Passot, M. Mathieu, S. Sommer, and P. Servant, DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistant Deinococcus radiodurans bacterium, Mol. Microbiol., 96, 1069-1084 (2015).   DOI
48 L. Wang, X. Guangzhi, H. Chen,Y. Zhao, N. Xu, B. Tian, and Y. Hua, DrRRA: a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans, Mol. Microbiol., 67, 1211-1222 (2008).   DOI
49 C. H. Tsai, R. Liao, B. Chou, and L. M. Contreras, Transcriptional analysis of Deinococcus radiodurans reveals novel small RNAs that are differentially expressed under ionizing radiation, Appl. Environ. Microbiol., 81, 1754-1764 (2015).   DOI
50 A. Martinez and R. Kolter, Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps, J. Bacteriol., 179, 5188-5194 (1997).   DOI
51 T. Councell, E. Landa, and D. Lovley, Microbial reduction of iodate, Water Air Soil Pollut., 100, 99-106 (1997).   DOI
52 H. Boukhalfa, G. A. Icopini, S. D. Reilly, and M. P. Neu, Plutonium (IV) reduction by the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1, Appl. Environ. Microbiol., 73, 5897-5903 (2007).   DOI
53 B. Luksiene, R. Druteikiene, D. Peciulyte, D. Baltrunas, V. Remeikis, and A. Paskevicius, Effect of microorganisms on the plutonium oxidation states, Appl. Radiat. Isot., 70, 442-449 (2012).   DOI
54 L. E. Macaskie, B. C. Jeong, and M. R. Tolley, Enzymically accelerated biomineralization of heavy metals: Application to the removal of americium and plutonium from aqueous flows, FEMS Microbiol. Rev., 14, 351-367 (1994).   DOI
55 S. Anderson and V. D. Appanna, Microbial formation of crystalline strontium carbonate, FEMS Microbiol. Lett., 116, 43-48 (1994).   DOI
56 V. Achal, X. Pan, and D. Zhang, Bioremediation of strontium (Sr) contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp, Chemosphere, 89, 764-768 (2012).   DOI
57 F. G. Ferris, C. M. Fratton, J. P. Gerits, S. Schultze-Lam, and B. S. Lollar, Microbial precipitation of a strontium calcite phase at a groundwater discharge zone near Rock Creek, British Columbia, Canada, Geomicrobiol. J., 13, 57-67 (1995).   DOI
58 M. Daly, Engineering radiation-resistant bacteria for environmental biotechnology, Curr. Opin. Biotechnol., 11, 280-285 (2000).   DOI
59 J. K. Fredrickson, S. M. Li, E. K. Gaidamakova, V. Y. Matrosova, M. Zhai, H. M. Sulloway, J. C. Scholten, M. G. Brown, D. L. Balkwill, and M. J. Daly, Protein oxidation: key to bacterial desiccation resistance?, ISME J., 2, 393-403 (2008).   DOI
60 G. Raghu, V. Balaji, G. Venkateswaran, A. Rodrigue, and P. M. Mohan, Bioremediation of trace cobalt from simulated spent decontamination solutions of nuclear power reactors using E. coli expressing NiCoT genes, Appl. Microbiol. Biotechnol., 81, 571-578 (2008).   DOI
61 H. Brim, A. Venkateswaran, H. M. Kostandarithes, J. K. Fredrickson, and M. J. Daly, Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments, Appl. Environ. Microbiol., 69, 4575-4582 (2003).   DOI
62 E. Gerber, R. Bernard, S. Castang, N. Chabot, F. Coze, A. Dreux-Zigha, E. Hauser, P. Hivin, P. Joseph, C. Lazarelli, G. Letellier, J. Olive, and J.-P. Leonetti, Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools, J. Appl. Microbiol., 119, 1-10 (2015).   DOI
63 D. M. Sweet and B. E. Moseley, The resistance of Micrococcus radiodurans to killing and mutation by agents which damage DNA, Mutat. Res., 34, 175-186 (1976).   DOI
64 J. R. Battista, Against all odds: the survival strategies of Deinococcus radiodurans, Annu. Rev. Microbiol., 51, 203-224 (1997).   DOI
65 M. M. Cox and J. R. Battista, Deinococcus radiodurans-the consummate survivor, Nat. Rev. Microbiol., 3, 882-892 (2005).   DOI
66 D. Slade and M. Radman, Oxidative stress resistance in Deinococcus radiodurans, Microbiol. Mol. Biol. Rev., 75, 133-191 (2011).   DOI
67 C. C. Lange, L. P. Wackett, K. W. Minton, and M. J. Daly, Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments, Nat. Biotechnol., 16, 929-933 (1998).   DOI
68 L. Lemee, E. Peuchant, M. Clerc, M. Brunner, and H. Pfander, Deinoxanthin: a new carotenoid isolated from Deinococcus radiodurans, Tetrahedron, 53, 919-926 (1997).   DOI
69 M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Venkateswaran, M. Hess, M. V. Omelchenko, H. M. Kostandarithes, K. S. Makarova, L. P. Wackett, J. K. Fredrickson, and D. Ghosal, Accumulation of Mn(II) in Deinococcus radiodurans facilitates gamma-radiation resistance, Science, 306, 1025-1028 (2004).   DOI
70 M. J. Daly, E. K. Gaidamakova, V. Y. Matrosova, J. G. Kiang, R. Fukumoto, D. Y. Lee, N. B. Wehr, G. A. Viteri, B. S. Berlett, and R. L. Levine, Small-molecule antioxidant proteome-shields in Deinococcus radiodurans, PLoS One, 5, e12570 (2010).   DOI
71 L. Zhang, Q. Yang, X. Luo, C. Fang, Q. Zhang, and Y. Tang, Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability, Arch. Microbiol., 188, 411-419 (2007).   DOI
72 W. T. Im, H. M. Jung, L. N. Ten, M. K. Kim, N. Bora M. Goodfellow, S. Y. Lim, J. W. Jung, and S. T. Lee, Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge, Int. J. Syst. Evol. Microbiol., 58, 2348-2353 (2008).   DOI
73 B. Tian, Z. Xu, Z. Sun, J. Lin, and Y. Hua, Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses, Biochim. Biophys. Acta, 1770, 902-911 (2007).   DOI
74 D. Appukuttan, A. S. Rao, and S. K. Apte, Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste, Appl. Environ. Microbiol., 72, 7873-7878 (2006).   DOI
75 H. Brim, S. C. McFarlan, J. K. Fredrickson, K. W. Minton, M. Zhai, L. P. Wackett, and M. J. Daly, Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments, Nat. Biotechnol., 18, 85-90 (2000).   DOI
76 B. W. Brooks and R. G. E. Murray, Nomenclature for Micrococcus radiodurans and other radiation resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species, Int. J. Syst. Bacteriol., 31, 353-360 (1981).   DOI
77 S. H. Yoo, H. Y. Weon, S. J. Kim, Y. S. Kim, B. Y. Kim, and S. W. Kwon, Deinococcus aerolatus sp. nov. and Deinococcus aerophilus sp. nov., isolated from air samples, Int. J. Syst. Evol. Microbiol., 60, 1191-1195 (2010).   DOI
78 A. D. Groot, V. Chapon, P. Servant, R. Christen, M. F. Saux, S. Sommer, and T. Heulin, Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert, Int. J. Syst. Evol. Microbiol., 55, 2441-2446 (2005).   DOI
79 F. A. Rainey, K. Ray, M. Ferreira, B. Z. Gatz, M. F. Nobre, D. Bagaley, B. A. Rash, M. J. Park, A. M. Earl, N. C. Shank, A. M. Small, M. C. Henk, J. R. Battista, P. Kampfer, and M. S. da Costa, Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample, Appl. Environ. Microbiol., 71, 5225-5235 (2005).   DOI
80 K. Suresh, G. S. Reddy, S. Sengupta, and S. Shivaji, Deinococcus indicus sp. nov., an arsenic resistant bacterium from aquifer in West Bengal, India, Int. J. Syst. Evol. Microbiol., 54, 457-461 (2004).   DOI
81 M. H. Choi, H. E. Shim, S. J. Yun, S. H. Park, D. S. Choi, B. S. Jang, Y. J. Choi, and J. J. Jeon, Gold-nanoparticle-immobilized Desalting columns for highly efficient and specific removal of radioactive iodine in aqueous media, ACS Appl. Mater. Interfaces, 8, 29227-29231 (2016).   DOI
82 A. C. Ferreira, M. F. Nobre, F. A. Rainey, M. T. Silva, R. Wait, J. Burghardt, A. P. Chung, and M. S. da Costa, Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs, Int. J. Syst. Bacteriol., 47, 939-947 (1997).   DOI
83 C. C. Lange, L. P. Wackett, K. W. Minton, and M. J. Daly, Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments, Nat. Biotechnol., 16, 929-933 (1998).   DOI
84 G. Raghu, S. S Singh, S. K. Lunavat, M. M. Pamarthi, A. Rodrigue, B. Vadivelu, P. B. Phanithi, V. Gopala, and S. K. Apte, Engineered Deinococcus radiodurans R1 with NiCoT genes for bioremoval of trace cobalt from spent decontamination solutions of nuclear power reactors, Appl. Microbiol. Biotechnol., 99, 9203-9213 (2015).   DOI
85 L. Newsome, K. Morris, and J. R. Lloyd, The biogeochemistry and bioremediation of uranium and other priority radionuclides, Chem. Geol., 363, 164-184 (2014).   DOI
86 L. Xiangqian, X. Huizhong, Z. S. Chen, and G. Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications, J. Nanomater, 2011, 1-16 (2011).
87 P. Hirsch, C. A. Gallikowski, J. Siebert, K. Peissl, R. Kroppenstedt, P. Schumann, E. Stackebrandt, and R. Anderson, Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV resistant bacteria from continental Antarctica, Syst. Appl. Microbiol., 27, 636-645 (2004).   DOI
88 L. Du, H. Jiang, X. Liu, and E. Wang, Biosynthesis of gold nanoparticles assisted by Escherichia coli $DH5{\alpha}$ and its application on direct electrochemistry of hemoglobin. Electrochem. Commun., 9, 1165-1170 (2007).   DOI
89 M. I. Husseiny, M. A. El-Aziz, Y. Badr, and M. A. Mahmoud, Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochim. Acta A, 67, 1003-1006 (2007).   DOI
90 S. Bose, M. F. Hochella, Y. A. Gorby, D. W. Kennedy, D. E. McCready, A. S. Madden, and B. H. Lower, Bioreduction of hematite nanoparticles by the dissimilatory iron reducing bacterium Shewanella oneidensis MR-1, Geochim. Cosmochim. Acta, 73, 962-976 (2009).   DOI
91 M. Kolari, U. Schmidt, E. Kuismanen, and M. S. Salkinoja-Salonen, Firm but slippery attachment of Deinococcus geothermalis, J. Bacteriol., 184, 2473-2480 (2002).   DOI
92 O. White, J. A. Eisen, J. F. Heidelberg, E. K. Hickey, J. D. Peterson, R. J. Dodson, D. H. Haft, M. L. Gwinn et al., Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1, Science, 286, 1571-1577 (1999).   DOI
93 X. Hua and Y. Hua, Improved complete genome sequence of the extremely radioresistant bacterium Deinococcus radiodurans R1 obtained using PacBio single-molecule sequencing, Genome Announc., 4, e00886-16 (2016).
94 K. S. Makarova, M. V. Omelchenko, E. K. Gaidamakova, V. Y. Matrosova, A. Vasilenko, M. Zhai, A. Lapidus, A. Copeland, E. Kim, M. Land, K. Mavromatis, S. Pitluck, P. M. Richardson, and M. J. Daly, Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks, PLoS One, 2, e955 (2007).   DOI
95 R. R. Kulkarni, N. S. Shaiwale, D. N. Deobagkar, and D. D. Deobagkar, Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity, Int. J. Nanomed., 10, 963-974 (2015).
96 A. de Groot, R. Dulermo, P. Ortet, L. Blanchard, P. Guerin, B. Fernandez, B. Vacherie, and C. Dossat, E. Jolivet, P. Siguire, M. Chandler, M. Barakat, A. Dedieu, and J. Armengaud, Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti, PLoS Genet., 5, e1000434 (2009).   DOI
97 M. M. G. Babu and P. Gunasekaran, Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate, Colloids Surf. B, 74, 191-195 (2009).   DOI
98 S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, and N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate, Mater. Lett., 61, 3984-3987 (2007).   DOI