• Title/Summary/Keyword: 미생물 생물량

Search Result 377, Processing Time 0.024 seconds

Microbial Diversity, Survival and Recovery as Bioindicators in Soils from Different Parent Materials in Korea (생물학적 토양 지표로서의 모재별 미생물의 다양성과 복원율)

  • Suh, Jang-Sun;Kwon, Jang-Sik;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.243-252
    • /
    • 2002
  • To develop indicators for soil health evaluation, biological characteristics of native soils from the different parent materials were studied. Survival rate of fluorescent Pseudomonas in soils was the lowest as 0.1% while those of thermophilic Bacillus and alkaliphilic bacteria were over the 90% by the soil drying stress. There was positive relationship between soil microbial biomass and organic carbon exudated from the microbial biomass by the treatment. The average air-drying effect of soils was 39.7% with ranges of 9.7~95.0%. The propagules of mesophilic Bacillus and Gram negative bacteria were increased by the re-wetting of dried soils. Soil pH affected positively to the recovering rate of microbial number. Average recovering rate of microbes was 65.3%, and there was positive relationship between microbial biomass recovery and fluorescent Pseudomonas population.

Enhanced Stabilization of Carcasses by Retrofitting Burial Sites to Bioreactor (매몰지 생물반응조 개조를 통한 사체의 안정화 촉진)

  • Kim, Geonha;Jeon, Haeseong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.10
    • /
    • pp.679-684
    • /
    • 2014
  • Many burial sites were constructed to suppress the spread of foot and mouth disease during outbreak. Defected burial sites were removed when leachate leak is presumed and carcasses were moved to the circular storage tanks. However, carcasses were not decomposed possibly due to low water content, low microbial activities, and poor mixing. In this research, storage tank containing carcasses in it was modified to bioreactor to accelerate stabilization. Liquids with nutrients were added and circulated to maintain the optimum water content while extraneous microorganisms were augmented. Settlement was used as the primary index for assessing stabilization rate, and the consolidation theory was utilized to estimate the expected final settlement. 30% of carcasses is expected to be decomposed and removed from the storage tank for five years of bioreactor operation.

호흡율 측정기를 이용한 폐수처리 공정수의 생물학적 활성측정

  • Lee, Yeong-Rak;Lee, Gi-Yong;Im, Ji-Hun;Lee, Sang-Hun;Mun, Hong-Man;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • In this study, it was observed to oxygen uptake rate(OUR) on microbes in activated sludge process. OUR was showed to 43, 55, and $64\;mgO_2/L/hr$ when inoculated microbes mass were 3, 5, and 10%(v/v%). In additon to oxygen was consumed to $4{\sim}42\;mgO_2/L/hr$ as changed substrate concentration. Also, we were measured kinetics coefficient in order to know growth tendency. It was concluded to maximum growth rate$(\;{\mu}\;_{max})$, $2.7\;day^{-1}$, yield coefficient, 0.655, and half-velocity coefficient, 36.11 mg/L.

  • PDF

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

Effect of Electrolysis on Bacterial Activity in Electrokinetic Bioremediation (동전기 생물학적 복원에서 전기분해반응이 미생물 활성에 미치는 영향)

  • Kim, Sang-Joon;Park, Ji-Yeon;Lee, You-Jin;Yang, Ji-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.764-769
    • /
    • 2006
  • In the electrokinetic(EK) process, oxygen production by electrolysis was proportional to current density. The dissolved oxygen (DO) concentration in anode tank and bioreactor increased with the circulation rate of electrolyte. The bacterial population in bioreactor rapidly increased by the supplement of current, but the DO concentration deceased by the increased bacterial oxygen consumption. From the results of EK bioremediation for pentadecane-contaminated soil, the bacterial population and removal efficiency at 1.88 $mA/cm^2$ were lower than those at 0.63 $mA/cm^2$. This is because the high oxygen production rate largely increased the production rate of organic acids, which reduced the electrolyte pH and bacterial activity. At 0.63 $mA/cm^2$, the highest bacterial population and removal efficiency could be obtained due to the appropriate oxygen production and small decrease in pH.

Physical Properties of Reticulated Polyurethane Foams and the Enhancement of Microbial Adhesion through their Surface Treatments (망상 폴리우레탄 폼의 물성 및 표면처리를 통한 미생물 고정화 특성의 향상)

  • 김시욱;장영미;명성운;최호석
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.412-417
    • /
    • 2003
  • We first investigated basic characteristics of reticulated polyurethane (PU) foams as microbial carriers. In general, the specific surface area of PU foams increases with respect to decreasing pore sizes. However, the number of microbes adhered on the unit surface of reticulated PU foams decreases with respect to decreasing pore sizes. Thus, as a result of totally considering all effects such as apparent density, hydrolysis rate, and adhesion, we can know that PU foams with 45 PPI is the most appropriate microbial carrier. In this study, we can also investigate the effect of various physico-chemical surface treatments on the adhesion of microbes on the surface of PU foams. We used a chitosan treatment, a PEI (Polyethylene Imine) treatment, a xanthane treatment and a plasma treatment. As a result of comparing all surface treatments, the plasma surface treatment was the best.

Influence of Electrochemical Oxidation Potential on Biofilm Structure and Bacterial Dissimilation in Wastewater Treatment Bioreactor (오수처리 반응기에서 생물막 매개체에 부과한 전기화학적 산화전위가 생물막의 구조와 미생물의 대사에 미치는 영향)

  • Na, Byung-Kwan;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • Biofilm media was equipped in two-compartmented wastewater treatment bioreactor which was separated by porcelain septum. DC 2.0 volt of electric potential was charged to anodic (oxidative) biofilm media (ABM) to induce oxidation potential but not to that of carbon (neutral) biofilm media (CBM) that was used for control test. Biofilm structure, biomass variation, Off variation and wastewater treatment efficiency in the bioreactor equipped with ABM (ABM-bioreactor) and CBM (CBM-bioreactor). Time-coursed variation of biofilm structure forming on surface of ABM and CBM was observed by scanning electron microscopy. The biofilm growing on ABM was dispersed on surface and was not completely covered the media but the biofilm growing on CBM was continuously increased and finally covered the media. The ORP of CBM was decreased to 100 mV, which was reciprocally proportional to the biomass growth. However, the ORP of ABM was about 800 mV, which was maintained during operation for about 60 days. The treatment efficiency of COD in the ABM bioreactor was 2 times higher than those in the CBM bioreactor. From these results, we proposed that electrochemical oxidation potential charged to biofilm media may inhibit formation of biofilm extremely condensed and activate bacterial cell metabolism.

혐기성 생물막 반응기의 기질 농도 변화에 따른 생물막 부착 특성 관찰

  • Lee, Seung-Ran;Lee, Deok-Hwan;Kim, Do-Han;Park, Yeong-Sik;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.521-524
    • /
    • 2001
  • The anaerobic continuous reactor, which was filled with a sludge of anaerobic digestion from Sooyoung sewage treatment plant, was supplied with synthetic wastewater of various concentration. After changing to substrate concentration, 디 1is research indicated that attached biomass was kept constant after attachment 23 days. In SEM photographs. shape and structure of biofilm could be observed, but bacteria species and methanogens were not identified. A large number of methanogenic bacteria were showed on the surface of PE substratum by fluorescence under 480nm of radiation.

  • PDF

Development of airflow control technology for Korean-type bioreactor based on influent water quality (유입수질 기반 한국형 생물반응조 송풍량 제어 기술 개발)

  • Yeo, Wooseok;Woo, Jea Suk;Song, Dong Hoon;Shin, Sung Bok;Kim, Jong Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.388-388
    • /
    • 2022
  • 하수처리 공정 중 생물반응조에서는 미생물의 산화 반응을 통해 하수 내 각종 유기물들을 처리하고 있다. 블로워는 호기조를 유리산소상태로 만들어 미생물들의 유기물 제어, 질산화가 원활하게 이루어질 수 있도록 지원하는 역할을 담당하고 있다. 그러나 실제 하수처리장에서는 유기물을 원활하게 처리하기 위하여 과도하게 블로워를 가동하고 있어 경제적인 측면에서 문제를 겪고 있다. 블로워를 통해 수중에 산소를 부족하게 공급할 경우 활성슬러지의 침전성이 저해되어 방류수 수질이 저해되는 반면, 용존산소가 과도하게 공급되어도 유기물질의 처리 효율은 증대되지 않으며 잉여용존산소는 대기 중으로 방류된다. 이러한 이유로 국내 하수처리장에서는 강화된 방류수 수질 기준을 만족하기 하고자 유입수질에 관계없이 과도하게 송풍기를 운영하고 있다. 이러한 하수처리장의 운영 및 경제적인 문제점을 해결하고자, 본 연구에서는 하수처리장으로 유입되는 원수의 수질을 처리하는 데 실제로 미생물이 필요한 산소요구량 및 공기공급량을 산정하는 프로그램을 개발하였다. 이를 통해 실제 하수처리장에서 필요한 산소요구량, 공기공급량을 산출하여 효율적인 하수처리장 운영이 가능하다. 실제 하수처리장에서의 프로그램을 통한 송풍량 절감 효율을 분석하고자 한 달간의 A 하수처리장 수질 데이터를 기반으로 하수처리에 필요한 산소요구량 및 공기공급량을 산정하였다. 실험 결과 프로그램 적용시 약 평균적으로 10%의 송풍량을 절감이 가능하며, 연구 결과를 바탕으로 효율적이고 경제적인 송풍기 운영조건의 기준을 제시하고자 한다.

  • PDF

An Experimental Study on the Restoration Creation of Tidal Flats (간석지 생태계 복원에 관한 실험적 연구)

  • Lee, Jeoung-gyu;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.1
    • /
    • pp.77-82
    • /
    • 2000
  • Seven constructed and three natural tidal flats were compared to evaluate state-of- the-art of creation and restoration technology for tidal flats. parameters studied were physico-chemical and biological characteristics of soils and rate of respiration. The natural tidal flats had higher contents of silts, nitrogen and organic matter compared to the constructed ones. The natural ones had reductive Bone below 2 cm whereas the constructed ones had oxidative zone from the surface to below 20 cm. The bacterial population in the soil of the constructed tidal flats was one to two magnitudes lower than that in the natural ones. Biomass of macrobenthos and microbial respiration rate, however, were not different significantly between the natural and the constructed tidal flats. The purification capacity by diatom+bacterial+meiobenthos and macrobenthos in the constructed tidal flats was higher than that in the natural ones due to deeper permeable layer for purification in the constructed tidal flats. There was an exceptional constructed tidal flat with similar physico-chemical and biological characteristics to natural ones. Shearing stress to the surface of the tidal flat by the flow of seawater was as low as that of natural ones. These hydraulic conditions seemed to be a controlling factor on structures and functions of tidal flats. The control of hydraulic condition seemed to be one of the most important factors to create natural-like tidal flats.

  • PDF