Effect of Electrolysis on Bacterial Activity in Electrokinetic Bioremediation

동전기 생물학적 복원에서 전기분해반응이 미생물 활성에 미치는 영향

  • 김상준 (특허청) ;
  • 박지연 (한국에너지기술연구원) ;
  • 이유진 (한국과학기술원 생명화학공학과 환경복원공학연구실) ;
  • 양지원 (한국과학기술원 생명화학공학과 환경복원공학연구실)
  • Published : 2006.07.31

Abstract

In the electrokinetic(EK) process, oxygen production by electrolysis was proportional to current density. The dissolved oxygen (DO) concentration in anode tank and bioreactor increased with the circulation rate of electrolyte. The bacterial population in bioreactor rapidly increased by the supplement of current, but the DO concentration deceased by the increased bacterial oxygen consumption. From the results of EK bioremediation for pentadecane-contaminated soil, the bacterial population and removal efficiency at 1.88 $mA/cm^2$ were lower than those at 0.63 $mA/cm^2$. This is because the high oxygen production rate largely increased the production rate of organic acids, which reduced the electrolyte pH and bacterial activity. At 0.63 $mA/cm^2$, the highest bacterial population and removal efficiency could be obtained due to the appropriate oxygen production and small decrease in pH.

미생물을 접종하지 않은 동전기 공정에서 전기분해에 의한 양극조에서 산소의 발생은 전류밀도에 비례하였으며 전해질을 순환시킴에 따라 생물반응기내 전해질과 함께 용존산소농도가 증가하였다. 전류의 공급과 함께 미생물 농도는 급격히 증가하였으며 이때 미생물의 산소소비량이 증가되어 용존산소농도가 감소되었다. Pentadecane-오염토양에 대한 동전기 생물학적 복원의 결과에서 높은 전류밀도 1.88 $mA/cm^2$에서 비록 산소의 발생량은 많았지만 오히려 증가된 유기산이 전해질 pH와 미생물 활성을 감소시키므로 미생물 농도와 제거효율이 0.63 $mA/cm^2$보다 낮게 나타났다. 0.63 $mA/cm^2$에서 적절한 산소의 공급과 동시에 전해액 pH의 감소가 작았으므로 최적의 미생물 농도와 제거효율을 얻을 수 있었다.

Keywords

References

  1. Cookson, J.T., Bioremediation Engineeing, McGraw-Hill Inc., USA(1995)
  2. Rabbi, M. F., Clark, B., Gale, R. J., Ozsu-Acar, E., Pardue, J., and Jackson, J., 'In situ TCE bioremediation study electrokinetic cometabolite injection,' Waste Management, 20, 279-286(2000) https://doi.org/10.1016/S0956-053X(99)00329-3
  3. DeFlaun, M. F. and Condee, C. W., 'Electrokinetic transport of bacteria,' J. Hazard. Mater., 55, 263-277 (1997) https://doi.org/10.1016/S0304-3894(97)00023-X
  4. Shapiro A. P. and Probstein, R. F., 'Removal of contaminants from saturated clay by electroosmosis,' Environ. Sci. Technol., 27(2), 283-291(1993) https://doi.org/10.1021/es00039a007
  5. Acar, Y. B. and Alshawabkeh, A. N., 'Electrokinetic remediation. 1. Pilot-scale tests with lead spiked kaolinite,' J. Geotechnical Engineering, 122, 173-185(1996) https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  6. Kim, S. J., Park, J. Y., Lee, Y. J., Lee, J. Y., and Yang, J. W., 'Application of a new electrolyte circulation method for ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite,' J. Hazard. Mater., B118, 171-176(2005)
  7. Pamukcu, S., Weeks, A., and Wittle, J. K., 'Electrochemical extraction and stabilization of selected inorganic species in porous media,' J. Hazard. Mater., 55(1-3), 305-318(1997) https://doi.org/10.1016/S0304-3894(97)00010-1
  8. Acar, Y. B. and Alshawabkeh, A. N., 'Principles of electrokinetic remediation,' Environmental Science & Technology, 27(13), 2638-2647(1993) https://doi.org/10.1021/es00049a002
  9. Millacheruvu, K. and Alshawabkeh, A. N., Emerging Technologies in Hazardous Waste Management, Vol. VIII, Kluwer Academic/Plenum Publishers(1999)
  10. Vogel, T. M. and Grbic-Galic, D., 'Incorporation of Oxygen from Water into Toluene and Benzene during Anaerobic Fermentative Transformation,' Applied Environmental Microbiology, 52(1) 200-202(1986)
  11. Clarke, R. L., Lageman, R., Pool, W., and Clarke S. R., 'Electrochemically-aided biodigestion of organic materials,' US Patent 5,846,393(1998)
  12. Saichek, R. E. and Reddy, K. R., 'Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil,' Chemosphere, 51(4), 273-287(2003) https://doi.org/10.1016/S0045-6535(02)00849-4
  13. Wick, L. Y., MattIe, P. A., Wattiau, P., and Harms, H., 'Electrokinetic transport of PAH-degrading bacteria in model aquifers and soil,' Environmental Science & Technology, 38(17), 4596-4602(2004) https://doi.org/10.1021/es0354420
  14. Boopathy, R., 'Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study,' Bioresource Technology, 94(2), 143-151(2004) https://doi.org/10.1016/j.biortech.2003.12.006
  15. Hess, A., Hohener, P., Hunkeler, D., and Zeyer, J., 'Bioremediation of a diesel fuel contaminated aquifer: Simulation studies in laboratory aquifer columns,' J. Contaminant Hydrology, 23(4), 329-345(1996) https://doi.org/10.1016/0169-7722(95)00107-7