• Title/Summary/Keyword: 미생물고정화

Search Result 35, Processing Time 0.024 seconds

Eco-friendly remediation and reuse for coastal dredged materials using a bioaugmentation technology (생물증강법을 이용한 오염해양준설토의 환경친화적 정화 및 재활용)

  • Kim, In-Soo;Ha, Shin-Young;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.374-381
    • /
    • 2015
  • Occurrences of coastal dredged materials are ever increasing due to port construction, navigational course maintenance and dredging of polluted coastal sediments. Ocean dumping of the coastal dredged materials has become virtually prohibited as London Treaty will be enacted as of the year 2012. It will be necessary to treat and recycle the dredged materials that may carry organic pollutants and heavy metals in a reasonable and effective process: collection of the dredged materials, liquid and solid separation, and treatment of organic compounds and heavy metals. In this study we have developed a continuous bioreactor system that can treat a mixture of silt and particulate organic matter using a microbial consortium (BM-S-1). The steady-state operation conditions were: pH (7.4-7.5), temperature ($16^{\circ}C$), DO (7.5-7.9), and salt concentration (3.4-3.7%). The treatment efficiencies of SCOD, T-N and T-P of the mixture were 95-96%, 92-99%, and 79-97%. The system was also effective in removal of heavy metals such as Zn, Ni, and Cr. Levels of MLSS during three months operation period were 11,000-19,000 mg/L. Interestingly, there was little sludge generated during this period of operation. The augmented microbial consortium seemed to be quite active in the removal of the organic component (30%) present in the dredged material in association with indigenous bacteria. The dominant phyla in the treatment processes were Proteobacteria and Bacteroidetes while dominant genii were Marinobacterium, Flaviramulus, Formosa, Alteromonadaceae_uc, Flavobacteriaceae_uc. These results will contribute to a development of a successful bioremediation technology for various coastal and river sediments with a high content of organic matter, inorganic nutrients and heavy metals, leading to a successful reuse of the polluted dredged sediments.

For Refuse of marine dredged eco-friendly cleaning technology (미세 해양오염퇴적물의 생물학적 처리기술 개발)

  • Kim, In-Soo;Ha, Shin-Young;Jeong, Kyung-Chul
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.167-168
    • /
    • 2012
  • 본 연구는 해양퇴적물 준설 중 해양의 탁도와 2차오염을 유발하는 미세한 입자의 퇴적물을 생물학적으로 처리하는 친환경 정화기술로 유용미생물제제(BM-S-1)를 투여한 Lab Scale의 실험장치를 이용하여 기초 실험을 수행하였다. 유용미생물제제(BM-S-1)가 우점되어 있는 Lab Scale 실험장치를 운전하여 유기물 정량분석방법인 COD, T-N, T-P를 분석해본 결과 모든 항목이 약 98% 이상 처리됨을 확인할 수 있었다. 특히 본 실험대상물질인 해양퇴적물은 고농도의 염분이 함유되어 있어 기존기술만으로는 생물학적 처리가 어려웠지만, 본 연구에서 사용된 유용미생물제제(BM-S-1)은 염분이 함유된 오염 퇴적물에서도 효과적인 생물학적 처리가 가능함을 확인 할 수 있었다. 따라서 준설 시 2차오염을 유발시키는 미세한 입자의 해양퇴적물을 본 공법으로 처리하여 방류할 시 친환경적인 준설이 이루어질 수 있으며 이 때 처리되어 배출되는 미세토양은 재이용 가능하다고 판단된다.

  • PDF

Appoication of Membrane Separation Technology to Wastewater and Sludge Treatment Processes (막분리 기술을 응용한 배수.슬러지처리 Process)

  • Noike, Tatsuya
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.20-29
    • /
    • 1996
  • 한외여과를 비롯한 막분리 기술은 의약 및 식품산업 등의 화학공학분야, 각종 제조업에서의 배수처리 및 물질회수 등에 널리 이용되는 실용기술로서 앞으로 활용이 기대되고 있다. 최근에 막분리 기술은 상.하수 및 배수 등의 수처리 분야에 있어서도 이용되고 있으며, 역침투에 의한 해수담수화, 정밀여과에 의한 탁질제거 등의 상수처리, 한외여과와 역침투에 의한 초순수제조, 한외여과와 RO등에 의한 잡용수도의 정화처리, 한외여과와 정밀여과를 고액분리장치로서 분뇨 및 하수처리 등과 같은 처리에 광범위하게 이용되고 있다. 또한 한외여과 등으로 유용미생물을 고농도로 유지하여 특정물질의 제거와 유용물질 등을 회수하는 Process도 개발되고 있다. 본 논문에서는 일본에 있어서 분리막을 도입한 배수처리 및 분뇨처리의 기술개발과 혐기성소화의 기능향상에 관한 연구의 현황에 관하여 소개하고, 분리막에 관한 한.일의 연구자간의 정보교환이 되었으면 한다.

  • PDF

Enhanced Degradation of Quinoline by Immobilized Bacillus Brevis (고정화된 Bacillus Brevis에 의한 큐놀린 분해의 증가)

  • S., Balasubramaniyan;M., Swaminathan
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Biodegradation of Quinoline by free and immobilized Bacillus brevis has been investigated. The rate of quinoline degradation by immobilized Bacillus brevis on coconut shell carbon is faster than the rate by the microorganism immobilized on foam pieces and free cells. A complete removal of 100 ppm of Quinoline in the sample was achieved at a hydraulic retention time of 20 hours with the biocatalyst prepared by immobilizing Bacillus brevis onto coconut shell carbon. The biocatalyst had a reasonable shelf life and desirable recycle capacity.

Interaction Between Plants and Rhizobacteria in Phytoremediation of Heavy Metal- Contaminated Soil (중금속 오염 토양의 식물상 복원에 있어 식물과 근권세균의 상호작용)

  • Koo So-Yeon;Cho Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.83-93
    • /
    • 2006
  • In heavily industrialized areas, soil sites are contaminated with high concentrations of heavy metals. These pollutants are highly accumulated to the human body through the food web and cause serious diseases. To remove heavy metals from the soil, a potential strategy is the environmental friendly and cost effective phytoremediation. For the enhancement of remediation efficiency, the symbiotic interaction between the plant and plant growth-promoting rhizobacteria (PGPR) has been attended. In this review, the interaction of the plant and PGPR in the heavy metal-contaminated soil has been reviewed. The physicochemical and biological characteristics of the rhlzosphere can influence directly or indirectly on the biomass, activity and population structure of the rhizobacteria. The root exudates are offered to the soil microbes as useful carbon sources and growth factors, so the growth and metabolism of rhizobacteria can be promoted. PGPR have many roles to lower the level of growth-inhibiting stress ethylene within the plant, and also to provide iron and phosphorus from the soil to plant, and to produce phytohormone such as indole acetic acid. The plant with PGPR can grow better in the heavy metal contaminated soil. Therefore higher efficiency of the phytoremediation will be expected by the application of the PGPR.

Electrostatic Immobilization of D-Xylose Isomerase to a Cation Exchanger for the Conversion of D-Xylose to D-Xylulose (D-xylose에서 D-xylulose로의 전환을 위한 D-xylose Isomerase의 정전기적 고정화)

  • Hang, Nguyen Thi;Kim, Sung-Gun;Kweon, Dae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.2
    • /
    • pp.163-167
    • /
    • 2012
  • Since D-xylose is not fermentable in Saccharomyces cerevisiae, its conversion to D-xylulose is required for its application in biotechnological industries using S. cerevisiae. In order to convert D-xylose to D-xylulose by way of an enzyme immobilized system, D-xylose isomerase (XI) of Escherichia coli was fused with 10-arginine tag (R10) at its C-terminus for the simple purification and immobilization process using a cation exchanger. The fusion protein XIR10 was overexpressed in recombinant E. coli and purified to a high purity by a single step of cation exchange chromatography. The purified XIR10 was immobilized to a cation exchanger via the electrostatic interaction with the C-terminal 10-arginine tag. Both the free and immobilized XIR10 exhibited similar XI activities at various pH values and temperatures, indicating that the immobilization to the cation exchanger has a small effect on the enzymatic function of XIR10. Under optimized conditions for the immobilized XIR10, D-xylose was isomerized to D-xylulose with a conversion yield of 25%. Therefore, the results of this study clearly demonstrate that the electrostatic immobilization of XIR10 via the interaction between the 10-arginine tag and a cation exchanger is an applicable form of the conversion of D-xylose to D-xylulose.

Microbial Immobilization, Characterization and Isolation of Nitrogen Oxidizing Bacteria (암모니아 및 아질산성 질소 산화세균의 분리 및 특성)

  • Lee, Yong-Seok;Yoo, Ju-Soon;Chung, Soo-Yeol;Park, Choon-Soo;Choi, Yong-Lark
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Abstract: In order to improve the system for biological nitrogen oxidizing process in sewage and wastewater, a bacterium having high abilities to oxidize of nitrogen was isolated from wastewater and polluted soils. The strain was identified to Bacillus sp. CH-N, based on the physiological and biochemical properties. Characteristics and oxidizing ability of both ammonia and nitrite were examined for the strain, Bacillus sp. CH-N. The strain showed the oxidizing rate about 80% to 90% on the sewage and wastewater after 48 h culture. The nitrogen oxidizing rate was increased in proportion to the initial concentration of glucose. The microorganism, Bacillus sp. CH-N cell immobilized on ceramic carrier were evaluated for the oxidation of ammonia in culture media.

Characteristics of Ammonia Removal in Biofilters Inoculated with Earthworm Cast. (분변토를 접종한 바이오필터의 암모니아 제거 특성)

  • 류희욱;한희동;조경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.1
    • /
    • pp.73-78
    • /
    • 2002
  • Four inorganic packing materials (zeocarbon, porous celite, porous glass, zeolite) and a earthworm cast were compared with regard to the removal of ammonia in a biofilter inoculated with earthworm cast. Physical adsorption of ammonia on packing materials were negligible except zeocarbon (23.5 g-$NH_3$/kg), and cell immobilization capacity have similar values irrespective of packing materials. Pressure drops of the packed bed were in order of earthworm cast zeocarbon zeolite porous glass porous. The maximum elimination capacity ($g-Nkg^{-1}$ $d^{-1}$ ) of ammonia, which were based on a unit volume of packing material, were in order of zeocarbon (526) earthworm cast (220) porous celite (93) > zeolite (68) > porous glass (53). By using kinetic analysis, the maximum removal rates ($V_{m}$ ) and the saturation constant ($K_{s}$ ) for ammonia were determined, and zeocarbon showed superior performance among the five materials.

Isolation and Characterization of a Diesel-Degrading Bacterium, Gordonia sp. SD8 (디젤 분해 세균 Gordonia sp. SD8 분리 및 특성)

  • Hong, Sun-Hwa;Kim, Ji-Young;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.335-339
    • /
    • 2010
  • A diesel-degrading bacterium, Gordonia sp. SD8, was isolated from soil contaminated with petroleum, and its diesel degradation was characterized in a soil as well as a liquid culture system. SD8 could grow in the mineral salt medium supplemented with diesel as a sole carbon and energy source. The maximum specific growth rate ($0.67{\pm}0.05\;d^{-1}$) and diesel degradation rate ($1,727{\pm}145$ mg-TPH $L^{-1}\;d^{-1}$) of SD8 showed at 20,000 mg-TPH $L^{-1}$ and $30^{\circ}C$, and then this bacterium could degrade high strength of diesel of 40,000 mg-TPH $L^{-1}$. The residual diesel concentration in the inoculated soil with SD8 was 3,724 mg-TPH kg-dry $soil^{-1}$ after 17 days, whereas the diesel concentration in the non-inoculated soil was $8,150{\pm}755$ mg-TPH kg-dry $soil^{-1}$. These results indicate that Gordonia sp. SD8 can serve as a promising microbial resource for the bioremediaion of contaminated soil with petroleum hydrocarbons including diesel.

Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production (아민기가 코팅된 규조토 담체를 이용한 초고온성 고세균 Thermococcus onnurineus의 세포 고정화 및 수소생산 연구)

  • Bae, Seung Seob;Na, Jeong Geol;Lee, Sung-Mok;Kang, Sung Gyun;Lee, Hyun Sook;Lee, Jung-Hyun;Kim, Tae Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.236-240
    • /
    • 2015
  • Previously we reported that the hyperthermophilic archaeon, Thermococcus onnurineus NA1 is capable of producing hydrogen (H2) from formate, CO or starch. In this study, we describe the immobilization of T. onnurineus NA1 as an alternative means of H2 production. Amine-coated silica particles were effective in immobilizing T. onnurineus NA1 by electrostatic interaction, showing a maximum cell adsorption capacity of 71.7 mg-dried cells per g of particle. In three cycles of repeated-batch cultivation using sodium formate as the sole energy source, immobilized cells showed reproducible H2 production with a considerable increase in the initial production rate from 2.3 to 4.0 mmol l−1 h−1, mainly due to the increase in the immobilized cell concentration as the batch culture was repeated. Thus, the immobilized-cell system of T. onnurineus NA1 was demonstrated to be feasible for H2 production. This study is the first example of immobilized cells of hyperthermophilic archaea being used for the production of H2.