• 제목/요약/키워드: 미립화 인젝터

검색결과 69건 처리시간 0.021초

가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성 (Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine)

  • 이창식;이기형;최수천;권상일
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

MPI 엔진용 공기 보조 인젝터의 분무 미립화 및 연소 특성에 관한 연구 (A Study on the Atomization and Combustion Characteristics of Air-assisted Injector in MPI Engine)

  • 서영호;이창석
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.52-58
    • /
    • 1998
  • The spray characteristics of air-assisted fuel injection and its effects on the engine combustion was investigated in this study. The atomization characteristics of a Bosch fuel injector inserted into the air-assist adapter were measured using particle motion analysis system. Droplet size decreased with air supplied and fine spray with below $60\mu\textrm{m}$ of SMD was acquired under the conditions of air-assist pressure over 0.5bar. The lean combustion performance of a 1.8L DOHC engine equipped with air-assist adapters was tested on the dynamometer. When the assistant air pressure is 1.0bar, lean limit recorded the highest value, and CO, HC emissions were decreased at the pressure over 1.0bar.

  • PDF

MPI 가솔린 기관용 인젝터의 분무 거동 및 미립화 특성에 관한 연구 (A Study on the Fuel Spray and Atomization Characteristics of MPI Gasoline Injector)

  • 서영호;이창식;이기형
    • 한국분무공학회지
    • /
    • 제1권4호
    • /
    • pp.32-39
    • /
    • 1996
  • Fuel spray in the MPI gasoline injector and its atomization characteristics are investigated with both macroscopic and microscopic visualization systems. The Bosch injector is inserted into an air-assist spray adapter which is designed to be fabricated and assembled easily. particle motion analysis system is used to measure the SMD of injector, where the assistant air pressure is varied from 0.0 to 1.5bar with fuel pressure 2.8bar. Droplet size decreased with higher air pressure and fine fuel spray with below $60{\mu}m$ of SMD is acquired at the assistant air pressure over 0.5bar.

  • PDF

인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향 (Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel)

  • 서현규;박수한;이창식
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

직접 분사식 가솔린 기관 인젝터의 분무 미립화 특성에 대한 해석 및 실험적 연구 (Numerical and Experimental Study on Spray Atomization Characteristics of GDI Injector)

  • 이창식;류열;김형준;박성욱
    • 한국분무공학회지
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2002
  • In this study numerical and experimental study on the spray atomization characteristics of a GDI injector is performed. To carry out numerical analysis, four hybrid models that are composed of conical sheet disintegration model, LISA model, DDB model, and RT model are used. The experimental results to evaluate the prediction accuracy of hybrid models are obtained by using phase Doppler particle analyzer and spray visualization system. It is shown that the prediction accuracy of hybrid model concerning spray developing process and spray tip penetration is good for all hybrid models, but the hybrid breakup models show different prediction of accuracy in the case of local radial SMD distribution.

  • PDF

바이오 디젤 연료의 분무 거동 및 미립화 특성 (Macroscopic Behavior and Atomization Characteristics of Bio-diesel Fuels)

  • 서현규;박성욱;권상일;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.23-29
    • /
    • 2004
  • This work was conducted to figure out the atomization characteristics of three types of bio-diesel fuels using a common-rail injection system. The process of spray development was visualized by using a spray visualization system composed of a Nd:YAG laser and an ICCD camera, The spray tip penetrations were analyzed based on the frozen images from the spray visualization system. On the other hand, the microscopic atomization characteristics such as the distributions of SMD and axial mean velocity were measured by using a phase Doppler particle analyzer system, It is revealed that the sprays of the bio-diesel fuels have larger SMD than that of diesel fuel mainly due to high viscosity of bio-diesel. Different characteristics of bio-diesel fuels were also measured in spray tip penetrations according to the fuels and mixing ration.

공기충돌형 연료분사장치의 분무특성에 관한 실험적 연구 (An experimental study on the characteristics of spray pattern by the Airblast Atomizer)

  • 김현중;한재섭;김유;민성기
    • 한국추진공학회지
    • /
    • 제2권2호
    • /
    • pp.24-29
    • /
    • 1998
  • Duplex Type의 2-유체 공기충돌형 Swirl 인젝터의 분무특성을 파악하고자 유체공급압력 0~13kg/$\textrm{cm}^2$ 범위에서 유량계수, 등가 분산각, 질량분포를 실험적으로 구하였다. 일반적으로 기체의 총 유량이 증가할수록 미립화는 촉진되나 반경방향 유량이 많은 경우에 분무형상은 비교적 안정적이었으며, 축방향 보다는 반경방향 선회기가 미립화에 미치는 영향이 컸다. 3kg/$\textrm{cm}^2$을 제외하고는 물 유량이 증가함에 따른 등가 분산각의 변화는 미소하였고, 기체의 유량증가도 마찬가지였다. Patternator를 사용한 질량 분포는 반경방향 기체유량이 증가함에 따라 분포곡선의 최대점은 낮아지면서 더 넓은 영역에 걸쳐 분포하였고, 물 유량의 증가에 따른 질량중심점의 위치는 변화가 없었다.

  • PDF

단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구 (A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle)

  • 장성호;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.253-256
    • /
    • 2009
  • 350Kw급 이하의 초소형 터보제트엔진에서 연료 미립화 특성을 만족하는 분사시스템을 개발하는 것은 매우 어려운 일이다. 그러나 회전 연료 분사시스템은 복잡한 고압연료펌프 시스템 없이도 엔진축의 원심력만을 이용함으로써 좋은 미립화를 할 수 있다. 이러한 이유로, 직경 40 mm의 매우 작은 회전식 연료 인젝터를 제작하였으며, 여러 가지 크기의 분사 오리피스에 대한 실험을 수행하였다. PDPA 측정 시스템을 사용하여 입자의 크기와 속도, 분무분포를 측정하였다. 실험 결과, 분사 오리피스로부터 분출된 단일 액주의 길이는 회전속도에 의해 제어되며, SMD는 회전수가 증가함에 따라 감소하고, 오리피스의 직경과 오리피스 내부에 생성되는 액막두께에 큰 영향을 받는다.

  • PDF

커먼레일 시스템용 구동방식에 따른 인젝터별 바이오디젤 분무 특성 연구 (An Experimental Study on Spray Characteristics of Bio-diesel fuel in Three Injectors with Different Operating Mechanism for Common-rail System)

  • 성기수;김진수;정석철;이진욱
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.88-94
    • /
    • 2015
  • Recently, exhaust gas regulation has been gradually strengthened due to depletion of fossil fuels and environmental problem like a global warming. Due to this global problem, the demand for eco-friendly vehicle development is rapidly increasing. A clean diesel vehicle is considered as a realistic alternative. The common-rail fuel injection system, which is the key technology of the clean diesel vehicle, has adopted injection strategies such as high pressure injection, multiple injection for better atomization of the fuel. In addition, the emission regulations in the future is expected to be more stringent, which a conventional engine is difficult to deal with. One of the way for actively proceeding is the study of alternative fuels. Among them, the bio-diesel has been attracted as an alternative of diesel. So, in this study, spray characteristics of bio-diesel was analyzed in the common-rail fuel injection system with three injectors driven by different operating mechanism.

동축형 인젝터의 미립화 특성 (Atomization Characteristics of shear coaxial twin fluid injector)

  • 한재섭;강경택;김유;김선진
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF