• Title/Summary/Keyword: 미래확률강수량

Search Result 52, Processing Time 0.034 seconds

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.

A Study on the Index of Drought Warning and Emergency for the Municipal Water Supply Management (도시지역 용수관리를 위한 가뭄 예경보지수에 관한 연구)

  • 조홍제
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.221-233
    • /
    • 1996
  • The goal of the present research was to suggest a simple, reliable, and easily evaluated index of drought that could be used to consider a counterplan for water supply management against water shortage for municipal and industrial uses in city area. The index of drought was calculated by the Phillips drought index technique. The phillips drought index is based on exceedence probabilities of monthly precipitation but it can also utilize daily data in order to present drought information on a real-time basis when needed. The application of the suggested technique was tested to municipal water supply system and management of Ulsan city and Pohang city, and showed promising. The Philips drought index technique could be used for lany other city's drought contingency paln.

  • PDF

Non-stationary frequency analysis of monthly maximum daily rainfall in summer season considering surface air temperature and dew-point temperature (지표면 기온 및 이슬점 온도를 고려한 여름철 월 최대 일 강수량의 비정상성 빈도해석)

  • Lee, Okjeong;Sim, Ingyeong;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.338-344
    • /
    • 2018
  • In this study, the surface air temperature (SAT) and the dew-point temperature (DPT) are applied as the covariance of the location parameter among three parameters of GEV distribution to reflect the non-stationarity of extreme rainfall due to climate change. Busan station is selected as the study site and the monthly maximum daily rainfall depth from May to October is used for analysis. Various models are constructed to select the most appropriate co-variate(SAT and DPT) function for location parameter of GEV distribution, and the model with the smallest AIC(Akaike Information Criterion) is selected as the optimal model. As a result, it is found that the non-stationary GEV distribution with co-variate of exp(DPT) is the best. The selected model is used to analyze the effect of climate change scenarios on extreme rainfall quantile. It is confirmed that the design rainfall depth is highly likely to increase as the future DPT increases.

Spatial Impact Assessment of Heat Wave on River Water Quality using Big Data (빅데이터를 이용한 폭염과 하천수질의 공간적 영향 평가)

  • Lee, Jiwan;Lim, Hyeokjin;Shin, Hyungjin;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.87-87
    • /
    • 2021
  • 이상기후 현상으로 기후변화가 사회와 경제에 미치는 영향이 뚜렷한 추세로 변화되고 있다. 현재 기후변화에 관련된 연구는 사회 시스템에서 위험관리를 위해 기온과 강수량에 따라 다양한 분야에 미치는 영향에 대한 연구를 중점으로 이뤄지고 있다. 본 연구는 여름철 폭염에 의한 기후변화가 하천수질에 미치는 영향을 평가하기 위한 것으로, 우리나라 기상청 91개의 기상관측소에서 일일온도 33℃ 이상의 이벤트를 대상으로 환경부 수질관측망 918개에 대한 14개의 하천수질인자인 DO, BOD, COD, TOC, DOC, TN, DTN, NH4-N, NO2-N, NO3-N, TP, DTP, PO4-P, Chl-a를 분석하였다. 이를 우리나라 117개 중권역별 하천수질과 폭염강도와 지속시간을 나타내는 폭염 지수를 산정하여 분석하였다. 폭염 관련 뉴스 데이터는 2013년부터 2019년까지 Python 기반 뉴스 크롤러를 이용해 폭염 취약지수(Heat Wave Vulnerability Index, HWVI)를 기준으로 분류하여 키워드를 수집하였으며 HWVI 중 '기후노출' 키워드와 관련된 기사는 총 22,514건으로 69.9%로 수집되었다. 공간적 영향 평가를 위해 Getis-Ord Gi*를 이용하여 폭염지수와 하천수질인자간 핫스팟 분석을 실시하고 폭염관련 빅데이터가 하천수질에 미치는 영향을 평가하였다. 폭염지수는 낙동강유역 하류에 대해 Chl-a, TN, TP 항목에서 높은 밀도를 보였다. 분석대상지역 내 폭염이 발생한 확률과 반경 밖에서 발생할 확률의 우도비를 분석하기 위해 SaTScan을 이용한 공간검색통계분석을 실시하였다. 분석결과 폭염지수와 DO의 공간상관성이 높은 것으로 나타났다.

  • PDF

A study on the simulation of flooding in Top-down construction site considering extreme rainfall (극한강우를 고려한 Top-down 현장 침수모의에 관한 연구)

  • Im, JangHyuk;Cho, HyeRin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.30-30
    • /
    • 2022
  • 최근 기후변화로 인한 국지성 호우 빈도 및 강수량이 급증하는 등 극한강우 발생 가능성이 높아지고 있는 실정이다. 공공 기반의 유역 및 지자체별 침수 대응은 지속적으로 이루어지고 있으나, 건설 현장 대응은 이에 비해 미흡한 실정이다. 특히, 건설 현장의 경우, 예측할 수 없는 홍수 유출에 대해서도 기존 설계시 반영된 홍수 유출량과 기상청 정보에만 의존하고 있어 극한강우 발생시 취약성을 나타낼 수 있다. 특히, Top-down 현장은 개구부, 표면 작업을 위한 포장 등에 의해 지하부로 유입되는 강우량이 많고, 지하 굴착공사시 단차 및 지하수 발생으로 극한강우시 침수에 의한 수재해 발생 확률이 높다. 이를 대비하기 위해 XP-SWMM 모형을 이용하여 지상부와 지하부의 강우-유출량을 산정하고 지하부 침수를 모의하였다. 실제 Top-down 현장조사를 통해 침수 관련 인자와 XP-SWMM을 연계하여 침수모의 기법에 적용하였다. 관련 주요인자는 강우량, 현장 지상부 면적, 지상부 배수로, 지하 유입부, 지하 배수펌프 등으로 현장 조사결과 나타났다. 강우자료의 경우, 극한강우를 고려하기 위해 현장 지역의 최대 강우량, 태풍 루사와 기상청 강우의 증가 시나리오를 고려하여 모의에 적용하였다. 본 연구에서는 극한강우에 대한 Top-down 침수 모의를 수행할 수 있는 상용 모델링과 이와연관된 인자를 도출하여 침수 모의 기법을 최적화 하였다. 이러한 침수 모의를 통해 Top-Down 현장 침수심 등을 예측할 수 있다. 향후 이를 통해 지하공간이 있는 건설현장의 강우-유출 현상및 침수 모의가 가능하고, 실시간 현장별 침수 예측 모델 개발로 현장별 대피경로 및 대응방안을 제시하여 인적 피해를 최소화할 수 있을 것으로 기대할 수 있다.

  • PDF

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

Calculation of future rainfall scenarios to consider the impact of climate change in Seoul City's hydraulic facility design standards (서울시 수리시설 설계기준의 기후변화 영향 고려를 위한 미래강우시나리오 산정)

  • Yoon, Sun-Kwon;Lee, Taesam;Seong, Kiyoung;Ahn, Yujin
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.6
    • /
    • pp.419-431
    • /
    • 2021
  • In Seoul, it has been confirmed that the duration of rainfall is shortened and the frequency and intensity of heavy rains are increasing with a changing climate. In addition, due to high population density and urbanization in most areas, floods frequently occur in flood-prone areas for the increase in impermeable areas. Furthermore, the Seoul City is pursuing various projects such as structural and non-structural measures to resolve flood-prone areas. A disaster prevention performance target was set in consideration of the climate change impact of future precipitation, and this study conducted to reduce the overall flood damage in Seoul for the long-term. In this study, 29 GCMs with RCP4.5 and RCP8.5 scenarios were used for spatial and temporal disaggregation, and we also considered for 3 research periods, which is short-term (2006-2040, P1), mid-term (2041-2070, P2), and long-term (2071-2100, P3), respectively. For spatial downscaling, daily data of GCM was processed through Quantile Mapping based on the rainfall of the Seoul station managed by the Korea Meteorological Administration and for temporal downscaling, daily data were downscaled to hourly data through k-nearest neighbor resampling and nonparametric temporal detailing techniques using genetic algorithms. Through temporal downscaling, 100 detailed scenarios were calculated for each GCM scenario, and the IDF curve was calculated based on a total of 2,900 detailed scenarios, and by averaging this, the change in the future extreme rainfall was calculated. As a result, it was confirmed that the probability of rainfall for a duration of 100 years and a duration of 1 hour increased by 8 to 16% in the RCP4.5 scenario, and increased by 7 to 26% in the RCP8.5 scenario. Based on the results of this study, the amount of rainfall designed to prepare for future climate change in Seoul was estimated and if can be used to establish purpose-wise water related disaster prevention policies.

Habitat Prediction and Impact Assessment of Eurya japonica Thunb. under Climate Change in Korea (기후변화에 따른 한반도 사스레피나무의 생육지 예측과 영향 평가)

  • Yun, Jong-Hak;Park, Jeong Soo;Choi, Jong-Yun;Nakao, Katsuhiro
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.5
    • /
    • pp.291-302
    • /
    • 2017
  • The research was carried out in order to find climate factors which determine the distribution of Eurya japonica, and the potential habitats (PHs) under the current climate and climate change scenario by using species distribution models (SDMs). Four climate factors; the warmth index (WI), the minimum temperature of the coldest month (TMC), summer precipitation (PRS), and winter precipitaion (PRW) : were used as independent variables for the model. Seventeen general circulation models under RCP (Representative concentration pathway) 8.5 scenarios were used as future climate scenarios for the 2050s (2040~2069) and 2080s (2070~2099). Highly accurate SDMs were obtained for E. japonica. The model of distribution for E. japonica constructed by SDMs showed that minimum temperature of the coldest month (TMC) is a major climate factor in determining the distribution of E. japonica. The area above the $-5.7^{\circ}C$ of TMC revealed high occurrence probability of the E. japonica. Future PHs for E. japonica were projected to increase respectively by 2.5 times, 3.4 times of current PHs under 2050s and 2080s. It is expected that the potential of E. japonica habitats is expanded gradually. E. japonica is applicable as indicator species for monitoring in the Korean Peninsula. E. japonica is necessary to be monitored of potential habitats.

Regional Frequency Analysis for Rainfall Under Climate Change (기후변화를 고려한 일강우량의 지역빈도해석)

  • Song, Chang Woo;Kim, Yon Soo;Kang, Na Rae;Lee, Dong Ryul;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.125-137
    • /
    • 2013
  • Global warming and climate change have influence on abnormal weather pattern and the rainstorm has a localized and intensive tendency in Korea. IPCC(2007) also reported the rainstorm and typhoon will be more and more stronger due to temperature increase during the 21st century. Flood Estimation Handbook(Institute of Hydrology, 1999) published in United Kingdom, in the case that the data period is shorter than return period, recommends the regional frequency analysis rather than point frequency analysis. This study uses Regional Climate Model(RCM) of Korea Meteorological Administration(KMA) for obtaining the rainfall and for performing the regional frequency analysis. We used the rainfall data from 58 stations managed by KMA and used L-moment algorithm suggested by Hosking and wallis(1993) for the regional frequency analysis considering the climate change. As the results, in most stations, the rainfall amounts in frequencies have an increasing tendency except for some stations. According to the A1B scenario, design rainfall is increased by 7~10% compared with the reference period(1970-2010).

Habitat Distribution Change Prediction of Asiatic Black Bears (Ursus thibetanus) Using Maxent Modeling Approach (Maxent 모델을 이용한 반달가슴곰의 서식지 분포변화 예측)

  • Kim, Tae-Geun;Yang, DooHa;Cho, YoungHo;Song, Kyo-Hong;Oh, Jang-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.3
    • /
    • pp.197-207
    • /
    • 2016
  • This study aims at providing basic data to objectively evaluate the areas suitable for reintroduction of the species of Asiatic black bear (Ursus thibetanus) in order to effectively preserve the Asiatic black bears in the Korean protection areas including national parks, and for the species restoration success. To this end, this study predicted the potential habitats in East Asia, Southeast Asia and India, where there are the records of Asiatic black bears' appearances using the Maxent model and environmental variables related with climate, topography, road and land use. In addition, this study evaluated the effects of the relevant climate and environmental variables. This study also analyzed inhabitation range area suitable for Asiatic black and geographic change according to future climate change. As for the judgment accuracy of the Maxent model widely utilized for habitat distribution research of wildlife for preservation, AUC value was calculated as 0.893 (sd=0.121). This was useful in predicting Asiatic black bears' potential habitat and evaluate the habitat change characteristics according to future climate change. Compare to the distribution map of Asiatic black bears evaluated by IUCN, Habitat suitability by the Maxent model were regionally diverse in extant areas and low in the extinct areas from IUCN map. This can be the result reflecting the regional difference in the environmental conditions where Asiatic black bears inhabit. As for the environment affecting the potential habitat distribution of Asiatic black bears, inhabitation rate was the highest, according to land coverage type, compared to climate, topography and artificial factors like distance from road. Especially, the area of deciduous broadleaf forest was predicted to be preferred, in comparison with other land coverage types. Annual mean precipitation and the precipitation during the driest period were projected to affect more than temperature's annual range, and the inhabitation possibility was higher, as distance was farther from road. The reason is that Asiatic black bears are conjectured to prefer more stable area without human's intervention, as well as prey resource. The inhabitation range was predicted to be expanded gradually to the southern part of India, China's southeast coast and adjacent inland area, and Vietnam, Laos and Malaysia in the eastern coastal areas of Southeast Asia. The following areas are forecast to be the core areas, where Asiatic black bears can inhabit in the Asian region: Jeonnam, Jeonbuk and Gangwon areas in South Korea, Kyushu, Chugoku, Shikoku, Chubu, Kanto and Tohoku's border area in Japan, and Jiangxi, Zhejiang and Fujian border area in China. This study is expected to be used as basic data for the preservation and efficient management of Asiatic black bear's habitat, artificially introduced individual bear's release area selection, and the management of collision zones with humans.