• Title/Summary/Keyword: 미끄럼실험

Search Result 128, Processing Time 0.02 seconds

FMFNN Modeling of the Tire Characteristics for Ground Vehicle Control (차량 제어를 위한 타이어 특성의 퍼지 소속 함수 신경망 모델링)

  • 박명관;서일홍
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.57-71
    • /
    • 1996
  • 차량 모델 비선형성의 주된 요인중 하나는 타이어의 비선형성이라고 할 수 있다. 타이어 모델도 간편화하기 위해 선형화된 타이어 모델을 적용할 경우에 저속 주행 또는 고속 주행이라고도 조향각이 적을 때는 문제가 없지만, 급격한 가감속과 과도한 조향각을 주었을 때는 타이어 미끄럼 각(Tire Slip Angle)이 급격히 변화되므로 선형화 된 타이어 모텔을 적용하지 못하게 된다. 그러므로 타이어와 지면 사이의 물리적 현상을 자세히 표현할 수 있는 비선형 타이어 모델을 적용하지 못하게 된다. 그러므로 타이어와 지면 사이의 물리적 현상을 자세히 표현할 수 있는 비선형 타이어 모델이 요구되어진다. 실험적 모델은 실제 차량의 실험 데이터를 바탕으로 커브 피팅(Curve Fitting)하여 타이어의 동특성을 표현하도록 모델링 하므로서 모델의 정확도를 높일 수 있는 반면 요구하는 계수들이 많아지게 되어 계산량이 증가되는 단점이 있다. 기존의 타이어 모델 연구 결과에 대해 분석하고, 관측 자료들을 바탕으로 FMFNN(Fuzzy Membership Function based Neural Network)을 이용한 함수 근사화로서 타이어 횡축력과 종축력의 모델링 방법을 제안하였다.

  • PDF

Long-Term Behavior of Square CFT Columns under Concentric Load (중심축 하중을 받는 각형 CFT 기둥의 장기거동에 관한 연구)

  • Kwon Seung-Hee;Kim Tae-Hwan;Lee Tae-Gyu;Kim Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.281-290
    • /
    • 2005
  • This paper presents experimental and analytical studies on long-term behavior of square CFT columns under central axial loading. Two loading cases are considered; (1) the load applied only at the inner concrete of the column and (2) the load applied simultaneously on both the concrete and the steel tube. Four specimens of square CFT columns were tested under the two loading cases, and basic creep test for two concrete specimens was performed to find out the creep properties of the inner concrete. Three-dimensional finite element analysis models were established and verified with the experimental results. The verification shows that the prediction for the long-term behavior of actual square CFT columns is possible from the three dimensional finite element modeling considering the bond behavior between steel tube and inner concrete. Also, experimental results and numerical calculations revealed that the bond stress Induced by the confinement pressure as well as the slip between inner concrete and steel tube were increased with time In the first loading case. However, the confinement by the loading Plate was decreased with time while increasing confinement effect by the steel tube was observed over time. In contrast no confinement effects occur in the second loading case.

Connection Tests for Cold-Formed Steel Wall Panels (냉간성형강 벽체패널의 연결부실험)

  • Lee, Young-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.739-746
    • /
    • 2014
  • The objective of this test series was to determine shear load per unit length which causes a unit slip in the fastener joint. The shear load is one of major factors which reflect partial composite action for cold-formed steel wall stud panels. Test method used were based on the methods presented in the 1962 AISI Specification. According to the comparison with experimental strength, it is seen that the shear loads used in nominal axial strength predictions made acceptable results.

Localization of a Tracked Robot Based on Fuzzy Fusion of Wheel Odometry and Visual Odometry in Indoor and Outdoor Environments (실내외 환경에서 휠 오도메트리와 비주얼 오도메트리 정보의 퍼지 융합에 기반한 궤도로봇의 위치추정)

  • Ham, Hyeong-Ha;Hong, Sung-Ho;Song, Jae-Bok;Baek, Joo-Hyun;Ryu, Jae-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.629-635
    • /
    • 2012
  • Tracked robots usually have poor localization performance because of slippage of their tracks. This study proposes a new localization method for tracked robots that uses fuzzy fusion of stereo-camera-based visual odometry and encoder-based wheel odometry. Visual odometry can be inaccurate when an insufficient number of visual features are available, while the encoder is prone to accumulating errors when large slips occur. To combine these two methods, the weight of each method was controlled by a fuzzy decision depending on the surrounding environment. The experimental results show that the proposed scheme improved the localization performance of a tracked robot.

Noise Reduction of Concrete Pavement by Texture Design (콘크리트 포장 표면처리 방법에 따른 소음 감소 방안 연구)

  • Mun, Jun-Beom;Park, Jin-Whoy;Kwon, Soon-Min;Han, Seung-Hwan;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.6 no.4 s.22
    • /
    • pp.123-136
    • /
    • 2004
  • This study tries to compare the noise difference by various surface treatments and to propose appropriate tinning methods. As literature reviews, longitudinally tined pavement is effective to reduce noise made between tire and pavement surface. Various surface treatments were applied to some sections of test road. In case of car, about 2$\sim$3dB(A) was reduced in the section of uniform space 18mm longitudinal tinning. The peak frequency point for truck case happened between 200 and 600 Hz. The maximum noise of car was measured at about 1000Hz. Therefore, it Is proved that surface treatment methods can have a large affect on noise generation. With a result that friction test, the transverse tined pavement showed better frictional characteristics than the longitudinally tined pavement, but as a whole it came out satisfactory result. Results from this study are of early age, so it is required to check the performance continuously.

  • PDF

Local Bond Stress-Slip Model of GFRP Rebars (GFRP 보강근의 부착응력-미끄럼 모델)

  • Cheong, Yeon-Geol;Yi, Chong-Ku;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.133-136
    • /
    • 2008
  • The cost of repairing the deterioration of concrete structures due to corrosion of the reinforcement steel has been the prominent figure in the maintenacne of the reinforced-concrete infrastructures. As an alternative material to steel reinforcement, the use of Glass Fiber Reinforced Polymer (GFRP) bar in concrete is being actively studied for the high resistance of chemical environment and high strength to weight ratio properties of GFRP. However, there remain various aspects of GFRP properties that still need to be studied before the standard design criteria can be established. One of the imminent issues is the bond between GFRP and concrete. In this study, the bond-behavior of GFRP bars in concrete is investigated via the pullout test with varying parameters: surface condition of GFRP bars and concrete compression strength. And the local bond-stress model of GFRP rabars with applying monotonc load was also derived from the present test.

  • PDF

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes (중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구)

  • Choi, Young Jae;Choi, Jae Hoon;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2019
  • In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

Utilizing Visual Information for Non-contact Predicting Method of Friction Coefficient (마찰계수의 비접촉 추정을 위한 영상정보 활용방법)

  • Kim, Doo-Gyu;Kim, Ja-Young;Lee, Ji-Hong;Choi, Dong-Geol;Kweon, In-So
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.28-34
    • /
    • 2010
  • In this paper, we proposed an algorithm for utilizing visual information for non-contact predicting method of friction coefficient. Coefficient of friction is very important in driving on road and traversing over obstacle. Our algorithm is based on terrain classification for visual image. The proposed method, non-contacting approach, has advantage over other methods that extract material characteristic of road by sensors contacting road surface. This method is composed of learning group(experiment, grouping material) and predicting friction coefficient group(Bayesian classification prediction function). Every group include previous work of vision. Advantage of our algorithm before entering such terrain can be very useful for avoiding slippery areas. We make experiment on measurement of friction coefficient of terrain. This result is utilized real friction coefficient as prediction method. We show error between real friction coefficient and predicted friction coefficient for performance evaluation of our algorithm.

An Experimental Study on the Frictional Behavior of Silver Coating Films at Sliding Surfaces (은 박막의 미끄럼 마찰거동에 대한 실험적 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.7-13
    • /
    • 1999
  • An experimental study was performed to discover the effect of silver coating on the frictional behavior of SM45C steel at sliding surfaces. Pure silver was coated the SM45C disk surfaces by a thermal evaporation method. Experiments using a pin-on-disk test-rig was performed under dry air and various humidity conditions. Friction coefficients increased to a high and unstable value after failure of coating, and friction coefficients increased with increasing the thickness of silver coated layer. But optimum coating thickness was not observed.

  • PDF

The wear properties of SiCw and SiCp reinforced bronze matrix composites (무윤활 미끄럼 마찰하에서의 SiC 휘스커 및 입자강화 청동기지 복합재의 마모특성)

  • 이상로;허무영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1993.04a
    • /
    • pp.59-62
    • /
    • 1993
  • 고품위의 동력전달 장치와 같은 고정밀 기능 부품들은 보다 높은 비강도, 고경도, 내마모성 및 내식성을 가져야 하며, 특히 소재의 마찰, 마모 특성은 기아제품 등의 수명, 정밀도 및 에너지 손실을 좌우하는 것으로서 물성의 열화를 극복할 수 있는 소재의 개발이 요구되고 있다. 지난 수년동안 금속기지에 $Al_2O_3$나 SiC등의 보강재를 첨가하여 복합재의 응착 및 연삭마모에 대한 저항성을 향상시키는 시도를 하고 있다. 주로 제조비용이 낮고 거의 등방적인 성질을 가지며 가공성이 좋은 입자 보강 복합재료에 대한 연구가 지배적이었지만, 입자 보강 복합재료의 경우 강도 및 탄성계수의 향상 정도가 적다는 단점을 지니고 있다. 본 연구에서는 분말야금법을 이용하여 금속기지에 세라믹상으로 SiC 입자 및 휘스커가 첨가된 복합재를 제조하여 제조공정변수에 따라 마모거동을 pin-on-disk 형태의 마모시험기에서 실험하였으며, 주사전자현미경으로 마모표면관찰 등으로 복합재의 마모기구를 연구하였다.

  • PDF