미국 버지니아대학 수학과 교수, 보험회사 계리인, 변호사를 거쳐, 영국 육군사관학교 교관으로 55세에 정년을 한 유태계 영국 수학자 J. J. 실베스터는 61세의 나이로 1876년 미국 최초의 연구중심대학인 존스홉킨스대학에 초대 수학과장으로 초빙되어 연구 인력을 배출하고 미국 최초의 수학연구저널을 발간하며 미국에 현대수학의 연구 여건을 마련 해 준다. 본 논문은 그와 그가 후임으로 추천한 F. 클라인이 19세기 후반 미국수학계에 끼친 역할을 분석한다. 우리는 실베스터와 클라인과 미국인 수학자 E. H. 무어가 100여년 전 낙후된 미국 수학을 당시 유럽 중심의 수학계 주류에 진입시키는 과정에서의 역할과 이 과정이 한국에서 갖는 의미를 생각한다.
미국 수학계는 하버드대학이 근대수학 교과과정을 도입 한 후 280여년(1640년)이 지나고, 미국수학회(AMS; American Mathematical Society) 창립 후 30년(1890년 뉴욕수학회, 1894년 미국수학회)이 지난 1920년대에도 아직 열악한 연구 여건을 가지고 있었다. 본 연구에서는 미국수학계에 국가연구위원회(National Research Council, NRC)를 통하여 수학분야에 최초로 박사후연구원을 지원하는 제도를 만들고, 기금을 조성하여 프린스턴대학에 당시 세계 최고수준의 수학과 건물인 파인 홀(Fine Hall)을 건축했으며, 1932년 새로 생긴 프린스턴 고등연구소(IAS)에 A. 아인스타인(Einstein), 폰 노이만(von Neumann)등을 초빙하고, Math Review 창간에 결정적인 기여를 하며 미국에서도 수학자가 순수수학 연구의 경쟁력을 확보할 수 있다는 것을 보여준 미국 초창기 수학자 O. 베블런(Osward Veblen)에 대하여 분석한다. 20세기 초반 대부분의 시간을 식민지 상태에서 보낸 한국은 20세기 후반에 회원들의 적극적인 학술활동에 힘입어 2008년 현재 국제수학연맹(IMU)의 5그룹(투표 수를 뜻함) 중에 4 그룹에 속하게 되었다. 더구나 2014년 국제수학자대회(ICM)를 서울에서 유치하게 되었다. 한국이 21세기를 한국 수학의 빠른 발전기로 만들 가능성은 어디에서 찾을 수 있을까? 이에 대한 긍정적인 답을 수학 후진국이었던 미국이 1876년 J. 실베스터를 초빙하여 연구 수준의 수학교육을 최초로 시작한 후 궁극적으로 시카고대학의 E. H. 무어(Moore)가 미국수학회장으로 리더쉽을 발휘한 1900년부터 단 100여년 만에 세계 수학 정상에 자리한 미국수학과 미국수학회의 예를 검증하여 찾아보고자 한다. E. H. 무어가 배출한 인재와 제시한 비전은 E. H. 무어의 제자, L. E. 딕슨(Dickson), O. 베블런, R. L. 무어와 G. D. 버코프(Birkhoff)를 통하여 미국에 구현되었다. 그 중 O. 베블런은 'Princeton algebraic topology' 그룹을 리드하며 미국수학 전반에 세계적인 연구여건을 조성한 탁월한 행정능력가 이었다. G. D. 버코프의 역할은 수학에 대한 학술적 기여의 비중이 컸다. 이들은 20세기 중반 미국이 세계 수학연구의 주류에 진입하는데 크게 기여하였다([9],[10],[21]). 수학자 베블런은 당대 미국 최고수준의 학술적 경지에 도달하였고 1923년 미국수학회장을 역임하였으며 자신이 미국수학계에 제시한 비전과 통찰력을 실제로 구현한 수학자, 리더, 그리고 창조적인 행정가였다. 본 논문은 수학자 베블런이 미국수학계에 끼친 전반적인 영향을 연구하고, 이를 통하여 미국 수학에 실질적인 경쟁력을 부여하며 미국을 세계 수학의 주류에 진입시킨 초창기 미국 수학계 리더의 역할에 대하여 생각해 본다. 본 연구는 근대수학 교과과정 도입 110여년, 2007년 대한수학회 창립 60년을 맞으며 최근 20년간 커다란 발전을 이루어 양적인 면에서는 2007년 세계 12위로 평가된 한국의 다음 단계로의 발전에 대한 논지를 제공하고, 실제로 한국이 세계 수학의 주류로 진입하는데 필요한 구체적인 할 일(Action plan)이 무엇인지를 보여준다. 이는 빠른 변화가 진행되고 있는 국내 과학기술계의 흐름에서 수동적인 추종이 아니라 수학계 스스로 연구-교육-봉사에 균형 잡힌 비전을 제시하고 추구하는 긍정적인 모델을 제시한다.
미국의 “전국 수학 교사 협의회” (National Council of Teachers of Mathematics, NCTM)는 1989년부터<학교 수학의 교육과정과 평가 규준> (1989), <수학 가르침(교수)의 전문성 규준> (1991), <학교 수학의 평가(시험) 규준> (NCTM, 1995), <학교 수학의 원리와 규준> (2000)을 출판하여 미국의 수학 교육의 전망(목표, 나아갈 길)과 규준(실행 지침)을 제시하였다. 수학 교사들로 구성된 미국의 NCTM은 학생, 학부모, 학교 행정가 등 많은 사람들과 힘을 합하여 모든 학생들에게 수준 높은 수학 교육을 받을 수 있는 여건(환경, 기회)을 조성하는 데 구심점의 역할을 하였다. 한편 많은 관련 단체들은 여러 배경과 능력을 가진 학생들이 전문성을 지닌 교사(특수 교사를 일컫는 말이 아니다. 수학 교과를 이해하고 수학의 전문성과 특수성을 가르칠 수 있는 일반 교사를 일컫는 말이다.)로부터 미래를 대비해 평등하고, 진취적이며, 지원이 잘 이루어지고, 공학 도구(IT)가 잘 갖춰진 환경에서 중요한 수학적 아이디어를 이해하면서 학습할 수 있는 수학 교실(미국에서는 우리나라처럼 수학 교사가 수학 시간에 학생의 방(교실: Homeroom)에 찾아가지 않고 학생들이 선생의 방(수학 교실: Classroom)을 찾아온다. 전형적인 수학 교실의 사진은 2쪽에 나와 있다.)을 만들기 위해 함께 힘썼다. NCTM에서 출간한 여러 규준들은 우리나라의 제 6 차와 제 7 차 교육과정에도 큰 영향을 미쳤다. 이 글에서는 NCTM (2000)에서 제시한 학습 원리를 간단히 살펴본 다음 이를 중심으로 현재 미국 수학교육의 교수 ${\cdot}$ 학습 이론의 동향을 살펴본다.
한국과 미국(North Carolina주)의 확률과 통계 교육 내용을 고찰한 결과 한국과 미국(North Carolina주)은 내용적인 면에서 많은 차이를 보였다. 한국의 경우, 9-가 단계와 10-가 단계, 선택과목 중 수학 I, 실용수학, 이산수학 과목에 제시되어 있는 확률과 통계 영역은 심화선택과목인 확률과 통계 과목의 내용을 축소하여 재구성한 내용을 제시하고 있다. 미국(North Carolina주)은 한국과는 달리, Introductory Mathematics, Algebra(I, II), Technical Mathematics(1, 2) Advanced Mathematics, Advanced Placement Calculus, Discrete Mathematics, Integrated Mathematics(1, 2, 3), Geometry 과목에서 확률과 통계 영역은 각 과목과 연관성 있는 내용으로 구성되어 있다. 한국의 심화 선택과목인 확률과 통계 과목과 미국(North Carolina주)의 AP통계(Advanced Placement Statistics)를 비교한 결과, 전체적으로, 자료의 정리, 확률변수와 확률분포 영역에서 한국과 미국(North Carolina주)은 거의 유사성을 보이고 있지만, 통계적 추론에서는 미국(North Carolina주)이 한국에 비하여 강화되어 있음을 알 수 있다.
본 연구를 수행하게된 동기는 1994년부터 미국에서 S.A.T.를 개정하고, 한국에서는 대학 수학 능력 시험 제도라는 새로운 제도가 도입되는 것에 있다. 대학 학업 적성 평가 제도로서 미국의 S.A.T. 제도에 대한 유효성이 많은 학자들에 의해서 연구되고 있다. 대학 수학 능력 시험과 S.A.T.는 각각 한국과 미국의 대학에서 학업 적성을 측정한다는 면에서 그 목적이 같다. 한국의 대학 수학 능력 시험의 유효성을 연구하기에는 아직 실시되지 않았으므로 너무 이르다고 본다. 대학 수학 능력 시험 제도 확립이 실험 평가에 근거하기 때문에 대학 수학 능력 시험 실험 평가와 S.A.T.를 비교 연구하는 것은 의미가 있다고 본다. 따라서 본 논문에서는 한국의 대학 수학 능력 시험 실험 평가(수리)와 미국의 S.AT.(수학)와의 상관 관계를 연구한다. 본 연구의 조사 대상으로 선발된 집단으로서 광주시의 3개교 6학급의 고등학교 3학년 283명이 참가하였다. 본 논문에서 다음과 같은 문제가 연구되었다. 1. 7차 실험 평가(수리)와 S.A.T.(수학)의 평균 점수에 대한 남녀 차이의 통계학적 유의성 (statistical significance). 2. 7차 실험 평가(수리)와 S.A.T.(수학)의 평균 점수에 대한 자연계 인문계 차이의 통계학적 유의성 (statistical significance). 3. 한국의 대학 수학 능력 시험 실험 평가(수리)와 미국의 S.A.T.(수학)의 상관 관계.
1989년 미국 수학교사협의회(National Council of Teachers of Mathematics)에서 "학교 수학을 위한 교육과정 및 평가 규준집 (The Curriculum and Evaluation Standards for School Mathematics)" 을 발간한 이후로 이 규준집은 미국 국내 뿐만 아니라 세계적으로도 수학교육학과 관련된 여러 연구에서 인용되어 왔다. 본 논문은 1989년 미국 NCTM 규준집이 미국의 일부 수학교육 단체에 의해 주도된 수학과 교육과정 개정 움직임이 아니라, 미국내 국가 차원에서 수많은 수학교육학자들과 수학 교사들의 합의와 다년간의 노력에 의해 만들어진 거의 국가수준의 교육과정임을 역사적으로 보여주고 있다. 특히, 본 논문은 1970년, 80년대 미국 수학교육학 단체들의 연구동향이 1989년 NCTN 규준집 내용과 밀접하게 결부되어 있음을 보여줌과 동시에, 이 NCTM 규준집이 우리나라 제 6차 및 7차 수학과 교육과정에 어떤 영향을 미쳤는지에 대해 분석한 내용을 소개하고 있다.
1890년에 설립된 시카고대의 초대 수학과장으로 미국수학사에서 결정적 역할을 담당했던 E. H. Moore는 걸출한 인재들을 길러내며 20세기 전반에 미국수학이 수학연구의 주류로 진입하는데 결정적 기여를 하였다. 그는 시카고대에서 실험적 교수법을 시도하였고, 그 결과, 연구력이 뛰어난 수많은 제자를 배출하였다. R. L. Moore는 E. H. Moore의 실험적 교수법과는 차별화된, 지금은 Texas 교수법 또는 Moore 교수법으로 알려져 있는 새로운 방식의 수학교수법을 대학수학교육에 적용하였다. 그는 20세기 전반, 미국수학이 빠르게 발전하는 과정에서 결정적인 역할을 담당했던 Veblen이나 Birkhoff와는 차별화된 중요한 역할을 수행하였다. 따라서 미국수학의 발전에 특별한 역할을 수행했던 R. L. Moore의 연구 경력과 Moore 교수법 및 R. L. Moore가 배출한 제자들의 역할에 대한 의미 있는 분석을 필요로 한다. 본 원고는 텍사스대에서 학문적 일생을 보낸 R. L. Moore와 그의 Moore 교수법, 또 그의 영향으로 탄생한 'American school of topology'가 미국수학사에서 갖는 의미를 분석하고, 20세기 전반 미국 수학의 학문적 도약과정이 현재의 한국수학계에 시사하는 바를 고찰한다.
본 연구는 학교 교육과정 가운데 특히 수학과 교육과정에 초점을 맞추고, 미국과 한국을 중심으로 수학과 교육과정의 변화를 초래한 근본적인 원인을 분석하고, 두 나라의 중학교 수학과 교육과정의 체제와 내용을 비교해 보고자 시도하였다. 이러한 비교는 교육과정의 공통성과 차이성을 찾아서 한국 교육과정의 사회적 및 개인적 적합성을 평가하고, 이후 한국의 교육과정 개선을 위한 방안들을 모색하기 위한 것이다. 이미 미국의 경우 1980 년대 들어 서면서 정보화 사회에 적응할 수 있는 수학과 교육과정의 개발 작업에 노력해 왔으며, 한국도 1980 년대 후반부터 제 6 차 교육과정의 개발을 위한 연구를 시작하였다. 그 결과, 미국은 NCTM (미국 수학교사협회)을 중심으로 새로운 수학교육의 표준을 설정하고, 향후 수학교육이 지향할 방향과 전략을 설정한 바 있다. 또한 한국은 제 6 차 교육과정 개정 작업을 통하여 1992 년에 새로운 교육과정을 고시하였다. 물론 양국의 수학과 교육과정을 비교 분석하기 위해서는 그 범위와 대상을 폭 넓게 정할 수도 있겠지만, 본 연구에서는 분석의 대상을 최근 미국의 수학과 교육과정의 근간을 이루고 있는 NCTM 의 일련의 교육 표준화 관련 연구들과 한국의 제 6 차 교육과정에 나타난 수학과 교육과정으로 제한하였다. 본 연구에서는 양국의 수학교육을 이해하기 위하여 1) 양국의 수학과 교육과정에 나타난 수학교육의 일반적 성격, 기본 방향 교육 목표를 비교 분석하였고, 2) 양국의 중학교 수학 교육과정에 나타난 교육 내용을 비교해 보았다. 이를 위해서, 본 연구는 NCTM 의 교육과정 안에 명시된 중학교 과정의 수학과 교육 목표 및 내용을 준거로 하여 한국 교육과정의 관련 내용을 분석하고 비교학적으로 해석하는 방식을 취하였다. 물론 한 국가의 교육과정 체제를 목표 및 내용 요소의 비교만으로 파악할 수 없다고 본다. 향후 미국과 한국의 교육과정을 이해하기 위한 연구들은 내용의 조직, 방법, 평가, 그리고 운영계획 등에 관한 분석으로 확대되어 시도되어야 할 것으로 본다.
이 논문은 수학적 개념의 뜻과 과 중요성을 살펴본 다음, 연구자가 소속되어 있는 한국의 대학생과 연구자가 연구년 동안 강의한 바 있는 미국의 대학생이 갖고 있는 수학적 개념의 수준에 대하여 조사하여 보고, 그 차이점을 비교하여 수학교육의 개선을 위한 시사점을 찾아보고자 하였다. 본 연구는 수학적 개념을 수학적 지식의 구성, 수학적 지식의 구조, 수학적 지식의 현상, 수학을 행하기, 수학적 아이디어의 가치 인식, 구성으로서의 학습, 유용한 노력으로서의 수학으로 분류하고 각 개념에 대한 양국 학생들의 인식 정도를 설문조사 방식으로 조사하였다. 본 연구에서 한국 학생들은 수학적 개념에 대한 7개의 영역 중에서 '수학적 지시의 현상', '수학을 행하기'를 제외한 5개의 영역에서 더 높은 수준을 보였다. 앞으로 한국의 수학교육은 수학을 실제로 행하는 활동을 더욱 강조하여야 할 것이다.
미국에서 학교 수학 수업에서의 개방적 접근은 일본과 미국 연구자들의 공동연구의 결과물이다. 우리는 그것에 대한 세 가지의 측면을 실례로 살펴보면 접근을 시도하겠다. : 1) 개방된 과정(open process)(문제의 해답에 이르는 방법이 여러 가지이다: 2) 개방형 문제(open-ended problems)(문제에 대한 정답이 여러 가지가 될 수 있는 문제), 3) 일본에서 '문제로부터 문제(from problem to problem)'라고 불리는 것 혹은 문제고안(problem formulating)하기(학생들이 새로운 문제를 명확하게 나타내기 위해 자신의 생각을 써 내려 가는 것)수학 지도에서 일본의 개방적 접근에 대한 우리의 이해를 바탕으로, 우리는 미국에서 보다 효과적인 수학 지도를 위한 몇 가지 방법을 선택 적용해 보았다. 이러한 접근의 대부분은 학습 계획안을 만들 때 여러 교사가 함께 참여하고 일련의 토론과 수정과정을 거친 뒤, 많은 부분이 개선되고 효과적인 계획안을 만들어 낸다는 점에서 미국의 수학교사들에게 새로운 것이다. 또한 이 접근법에서는 교사가 문제를 해결하는 과정에서 학생 개개인이나 그룹을 활동적으로 관찰하여 그들의 활동을 비교하고 토론한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.