• Title/Summary/Keyword: 물체분류

Search Result 246, Processing Time 0.027 seconds

Computational representative techniques of human/machine configurations (인간/기계 형상의 컴퓨터 표현기법)

  • Y.H. Yoon
    • Proceedings of the ESK Conference
    • /
    • 1992.10a
    • /
    • pp.3-8
    • /
    • 1992
  • 컴퓨터 스크린상에 어떤 물체의 형상을 나타낼 때 각 형태에 따라 그 표현 기법은 크게 두 분야로 나뉘게 되는데 대부분의 기계부품들처럼 원통이나 평면 등과 같이 기하학적 기본형태들로 이루어진 것과 사람이나 동물처럼 형상자체가 단순한 수학적공식으로 표현이 불가능한 형태(Free Form Geometry)로 분류된다. 어떤 대상물체가 선정되면 그것의 기하학적 형상을 먼저 컴퓨터 스크린상에 정확한 형상데이터로 표현된 다음 가시화를 위한 것이든 시뮬레이션 목적이든 그 형상 데이터가 이용된다. 이처럼 컴퓨터에 의한 모의 실험에서 대상물체를 모델링하는 단계는 반드시 필요하다. 최근 컴퓨터에 의한 각종 모델의 시뮬레이션을 시도할 때 Modeling 단계에서 수학적 공식으로 표현이 가능한 모델(Mathemeatical model)보다 임의 형태를 가진 모델(Physical model)표현에 많은 애로를 겪고 있는 실정이다. 따라서, 본 연구에서는 인간이나 항공기처럼 복잡한 형태를 가진 물체형상을 컴퓨터 스크린상에 표현할 때 비교적 실물에 가까운 형상데이터를 얻는 기법들에 대해 기술하고 그 결과를 소개한다. 특히 인간의 정적 또는 동적인 자세변화에 따른 각 신체 부위의 정확한 계량분석을 시도할 때 본 기법들의 응용이 가능하다.

  • PDF

A Study on Object Picking Recognition for Flexible packaging (유연포장을 위한 전통장류 물체 파지 영역 인식에 관한 연구)

  • Shin, Dongin;Trung, BuiMinh;Kim, Bong-Seok;Kim, Youngouk
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.600-601
    • /
    • 2021
  • 식품제조 현장에서 유연포장을 수행하기 위해, 로봇이 다양한 제품들을 파지하거나 이송하는 작업이 필수적이다. 본 논문에서는 전통장류 식품제조에서 다양한 종류와 무게를 조합하는 혼합포장을 위해 전통장류 물체 영역 인식과 종류 인식을 수행한다. 이를 위하여, 대표적인 전통장류에 대해 종류를 분류하고, RGB-D 데이터를 입력으로 물체 영역과 종류 인식을 수행하는 딥러닝 네트워크를 학습한다. 실험 결과를 통해, 물체 영역의 중심점을 기반으로 흡착 기반 파지점을 선정할 수 있음을 확인한다.

An Unstructured 3-D Chimera Technique for Overlapped Bodies inRelative Motion (3차원 비정렬 중첩격자계를 이용한 서로 겹쳐진 물체들 간의 상대운동 해석기법에 관한 연구)

  • 안상준;권오준;정문승
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.1-7
    • /
    • 2006
  • In the present study, A 3-D chimera technique for overlapped bodies in relative motion is studied using unstructured meshes. If all node points of a mesh element at solid boundary are in another body, this element is excluded from computational domain. For computation of unsteady flow, non-active cells have proper variables using interpolation and extrapolation. These variables are used in next time step. The motion of a launching trajectory ejected from a wing and the motion of deploying fins of a trajectory which have not been simulated are computed to conform practicality of this technique.

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

The Method of Abandoned Object Recognition based on Neural Networks (신경망 기반의 유기된 물체 인식 방법)

  • Ryu, Dong-Gyun;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1131-1139
    • /
    • 2018
  • This paper proposes a method of recognition abandoned objects using convolutional neural networks. The method first detects an area for an abandoned object in image and, if there is a detected area, applies convolutional neural networks to that area to recognize which object is represented. Experiments were conducted through an application system that detects illegal trash dumping. The experiments result showed the area of abandoned object was detected efficiently. The detected areas enter the input of convolutional neural networks and are classified into whether it is a trash or not. To do this, I trained convolutional neural networks with my own trash dataset and open database. As a training result, I achieved high accuracy for the test set not included in the training set.

3D Object Restoration and Data Compression Based on Adaptive Simplex-Mesh Technique (적응 Simplex-Mesh 기술에 기반한 3차원 물체 복원과 자료 압축)

  • 조용군
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.436-443
    • /
    • 1999
  • Most of the 3D object reconstruction techniques divide the object into multiplane and approximate the surfaces of the object. The Marching Cubes Algorithm which initializes the mesh structure using a given isovalue. and Delaunay Tetrahedrisation are widely used. Deformable models are well-suited for general object reconstruction because they make little assumptions about the shape to recover and they can reconstruct objects *om various types of datasets. Now, many researchers are studying the reconstruction systems based on a deformable model. In this paper, we propose a novel method for reconstruction of 3D objects. This method, for a 3D object composed of curved planes, compresses the 3D object based on the adaptive simplexmesh technique. It changes the pre-defined mesh structure, so that it may approach to the original object. Also, we redefine the geometric characteristics such as curvatures. As results of simulations, we show reconstruction of the original object with high compression and concentration of vertices towards parts of high curvature in order to optimize the shape description.

  • PDF

A Study of 3D World Reconstruction and Dynamic Object Detection using Stereo Images (스테레오 영상을 활용한 3차원 지도 복원과 동적 물체 검출에 관한 연구)

  • Seo, Bo-Gil;Yoon, Young Ho;Kim, Kyu Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.326-331
    • /
    • 2019
  • In the real world, there are both dynamic objects and static objects, but an autonomous vehicle or mobile robot cannot distinguish between them, even though a human can distinguish them easily. It is important to distinguish static objects from dynamic objects clearly to perform autonomous driving successfully and stably for an autonomous vehicle or mobile robot. To do this, various sensor systems can be used, like cameras and LiDAR. Stereo camera images are used often for autonomous driving. The stereo camera images can be used in object recognition areas like object segmentation, classification, and tracking, as well as navigation areas like 3D world reconstruction. This study suggests a method to distinguish static/dynamic objects using stereo vision for an online autonomous vehicle and mobile robot. The method was applied to a 3D world map reconstructed from stereo vision for navigation and had 99.81% accuracy.

De-interlacing and Block Code Generation For Outsole Model Recognition In Moving Picture (동영상에서 신발 밑창 모델 인식을 위한 인터레이스 제거 및 블록 코드 생성 기법)

  • Kim Cheol-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.1
    • /
    • pp.33-41
    • /
    • 2006
  • This paper presents a method that automatically recognizes products into model type, which it flows with the conveyor belt. The specific interlaced image are occurred by moving image when we use the NTSC based camera. It is impossible to process interlaced images, so a suitable post-processing is required. For the purpose of this processing, after it remove interlaced images using de-interlacing method, it leads rectangle region of object by thresholding. And then, after rectangle region is separated into several blocks through edge detection, we calculate pixel numbers per each block, re-classify using its average, and classify products into model type. Through experiments, we know that the proposed method represent high classification ratio.

  • PDF

Real-time Face Localization for Video Monitoring (무인 영상 감시 시스템을 위한 실시간 얼굴 영역 추출 알고리즘)

  • 주영현;이정훈;문영식
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.11
    • /
    • pp.48-56
    • /
    • 1998
  • In this paper, a moving object detection and face region extraction algorithm which can be used in video monitoring systems is presented. The proposed algorithm is composed of two stages. In the first stage, each frame of an input video sequence is analyzed using three measures which are based on image pixel difference. If the current frame contains moving objects, their skin regions are extracted using color and frame difference information in the second stage. Since the proposed algorithm does not rely on computationally expensive features like optical flow, it is well suited for real-time applications. Experimental results tested on various sequences have shown the robustness of the proposed algorithm.

  • PDF

Three-dimensional Distortion-tolerant Object Recognition using Computational Integral Imaging and Statistical Pattern Analysis (집적 영상의 복원과 통계적 패턴분석을 이용한 왜곡에 강인한 3차원 물체 인식)

  • Yeom, Seok-Won;Lee, Dong-Su;Son, Jung-Young;Kim, Shin-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.1111-1116
    • /
    • 2009
  • In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.