• Title/Summary/Keyword: 물질수송량

Search Result 87, Processing Time 0.022 seconds

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Evaluation of the Fruit Quality Indices during Maturation and Ripening and the Influence of Short-term Temperature Management on Shelf-life during Simulated Exportation in 'Changjo' Pears (Pyrus pyrifolia Nakai) (배 신품종 '창조'의 성숙 중 품질 요인 변화 및 수송온도 환경에 따른 반응성)

  • Lee, Ug-Yong;Choi, Jin-Ho;Ahn, Young-Jik;Chun, Jong-Pil
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.378-385
    • /
    • 2017
  • In this study, we evaluated the changes of fruit quality indices during fruit development and ripening in Korean new pear cultivar 'Changjo', developed from a cross between 'Tama' and '81-1-27' ('Danbae' ${\times}$ 'Okusankichi') in 1995 and named in 2009, to determine appropriate harvest time and to enhance the market quality and broaden the cultivation area. The fruits of 'Changjo' pears harvested from 132 days after full bloom (DAFB) to 160 DAFB. Fruit growth and quality indices were monitored at 1 week interval by measuring fruit weight, length, diameter, firmness, and taste related quality indices. The calculated fruit fresh weight increased continuously with fruit development and reached to an average of 594g on Sep. 20 (160 DAFB). The ratio of length to diameter declines as fruit maturation progress, resulting in 0.898 for ripe fruit stage as a round oblate shape. Flesh firmness of 'Changjo' pears showed over 30N until 153 DAFB and then decreased abruptly with fruit ripening, reaching a final level of about 26.44N on 160 DAFB. Starch content of fruit sap was also decreased abruptly after 146 DAFB which decreased almost half of the fruits harvested at 139 DAFB. In parallel with the decrease of flesh firmness, ethanol insoluble solids (EIS) content decreased sharply with fruit ripens, only 50% of EIS was detected on the fruits harvested on 160 DAFB when compared to that of the fruits harvested on 139 DAFB (Aug. 30). The maximum value of soluble solids contents was observed in the fruits harvested on 153 DAFB, resulting in $14.2^{\circ}Brix$. The changes of skin color difference $a^*$ which means loss of green color occurred only after 139 DAFB, coincide with the decrease of SPAD value of the fruit skin. The sugars of the 80% ethanol soluble fraction consisted mainly of fructose, sorbitol, glucose and sucrose, also increased during maturation and ripening. Fructose and sucrose contents were larger than those of glucose and sorbitol in flesh tissues. These results were explained that stored starch is converted to soluble sugars during fruit maturation, mainly in fructose and sucrose increasing the sweetness of this cultivar. Total polyphenols were increased up to middle of fruit maturation (146 DAFB) and then decreased continuously until the end of fruit maturation. Consequently, our results suggested that the commercial harvest time of 'Changjo' pears should not be passed 153 DAFB and late harvest of this cultivar would not good for quality maintenance during shelf-life. As a result of the post-harvest low-temperature acclimation experiment during the short-term transportation period, fruits harvested at 146 DAFB tended to maintain higher firmness after 14 days of simulated marketing at $25^{\circ}C$ compared to fruits harvested at 153 DAFB regardless of temperature set. And, the slower the rate of decrease to the final transport temperature of $5^{\circ}C$, the higher the incidence of internal browning and ethylene production. Therefore, in order to suppress the physiological disorder and to maintain the fruit quality when exporting to Southeast Asia in the 'Chanjo' pears, it is desirable to lower the temperature of the fruits within a short time after harvest and to set the harvest time before 146 days after full bloom.

Experimental Research on the Power Improvement by Increasing Intake pressure in a 1.4 L Turbocharged CNG Port Injection Spark Ignition Engine (1.4L 급 터보 CNG 엔진에서 흡기압력 상승에 따른 출력 증대 효과에 관한 연구)

  • Lee, Jeong-Woo;Park, Cheol-Woong;Bae, Jong-Won;Kim, Chang-Gi;Lee, Sun-Youp;Kim, Yong-Rae
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.90-96
    • /
    • 2019
  • Natural gas has been regarded as one of major alternative fuels, because of the increment of mining shale gas and supplying PNG(Pipeline Natural Gas) from Russia. Thus, it needs to broaden the usage of natural gas as the increasing its supplement. In this situation, application of natural gas on the transport area is a good suggestion to reduce exhaust emissions such as CO2(carbon dioxides) and soot from vehicles. For this reason, natural gas can be applied to SI(spark ignition) engines due to its anti-knocking and low auto-ignitibility characteristics. Recently, since turbocharged SI engine has been widely used, it needs to apply natural gas on the turbocharged SI engine. However, there is a major challenge for using natural gas on turbocharged SI engine, because it is hard to make natural gas direct injection in the cylinder, while gasoline is possible. As a result, there is a loss of fresh air when natural gas is injected by MPI (multi-point injection) method under the same intake pressure with gasoline-fueled condition. It brings the power reduction. Therefore, in this research, intake pressure was increased by controling the turbocharger system under natural gas-fueled condition to improve power output. The goal of improved power is the same level with that of gasoline-fueled condition under the maximum torque condition of each engine speed. As a result, the maximum power levels, which are the same with those of gasoline-fueled conditions, with improved brake thermal efficiency could be achieved for each engine speed (from 2,000 to 6,000 rpm) by increasing intake pressure 5-27 % compared to those of gasoline-fueled conditions.

Fuel characteristics of Yellow Poplar bio-oil by catalytic pyrolysis (촉매열분해를 이용한 백합나무 바이오오일의 연료 특성)

  • Chea, Kwang-Seok;Jeong, Han-Seob;Ahn, Byoung-Jun;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Bio-oil has attracted considerable interest as one of the promising renewable energy resources because it can be used as a feedstock in conventional petroleum refineries for the production of high value chemicals or next-generation hydrocarbon fuels. Zeolites have been shown to effectively promote cracking reactions during pyrolysis resulting in highly deoxygenated and hydrocarbon-rich compounds and stable pyrolysis oil products. In this study, catalytic pyrolysis was applied to upgrade bio-oil from yellow poplar and then fuel characteristics of upgraded bio-oil was investigated. Yellow Poplar(500 g) which ground 0.3~1.4 mm was processed into bio-oil by catalytic pyrolysis for 1.64 seconds at $465^{\circ}C$ with Control, Blaccoal, Whitecoal, ZeoliteY and ZSM-5. Under the catalyst conditions, bio-oil productions decreased from 54.0%(Control) to 51.4 ~ 53.5%, except 56.2%(Blackcoal). HHV(High heating value) of upgraded bio-oil was more lower than crude bio-oil while the water content increased from 37.4% to 37.4 ~ 45.2%. But the other properties were improved significantly. Under the upgrading conditions, ash and TAN(Total Acid Number) is decrease and particularly important as transportation fuel, the viscosity of bio-oil decreased from 6,933 cP(Control) to 2,578 ~ 4,627 cP. In addition, ZeoliteY was most effective on producing aromatic hydrocarbons and decreasing of from the catalytic pyrolysis.

Springtime Distribution of Inorganic Nutrients in the Yellow Sea: Its Relation to Water Mass (수괴특성에 따른 춘계 황해의 영양염 분포 특성)

  • Kim, Kyeong-Hong;Lee, Jae-Hak;Shin, Kyung-Soon;Pae, Se-Jin;Yoo, Sin-Jae;Chung, Chang-Soo;Hyun, Jung-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.224-232
    • /
    • 2000
  • Inorganic nutrient concentrations in relation to springtime physical parameters of the Yellow Sea were investigated during April 1996. Three major water masses, i.e., the Yellow Sea Warm Current Water (YSWC), Coastal Current Water (CCW) and Changjiang River Diluted Water (CRDW), prevailed in the study area. Water masses were vertically wel1 mixed throughout the study area, and nutrients were supplied adequately from bottom to surface layer. As result of ample nutrients supplied by vertical mixing together with progressed daylight condition, springtime phytoplankton blooms were observed, which was responsible for the depletion of inorganic nutrients in surface water column. Low nutrients concentration in bottom water of the central Yellow Sea (Stn. D9; nitrate: <2 ${\mu}$M, phosphate: <0.3 ${\mu}$) was associated with the entrance of YSWC which is characterized by high temperature and salinity. Influenced by runoff and vertical tidal mixing, CCW with high nutrient concentrations probably associated with China and Korea coastal waters with high nutrients concentration. For the local scale of inorganic nutrient distribution, nutrient transfers from coast to central areas were limited due to restriction imposed by tidal fronts (Stn. D6) and thus affected the horizontal nutrient profiles. Relatively high phytoplankton biomass was observed in the tidal front (Chl-${\alpha}$=12.38 ${\mu}$gL$^{-1}$) during the study period. Overall, the springtime nutrient distribution patterns in the Yellow Sea appeared to be affected by: (1) Large-scale influx of YSWC with low nutrient concentrations and CCW with high nutrient concentrations influenced by Korea and China coastal waters; (2) vertical mixing of water mass and phytoplankton distribution; and (3) local-scale tidal front as well as phytoplankton blooms alongthe tidal front.

  • PDF

Association of apolipoprotein E polymorphisms with serum lipid profiles in obese adolescent (비만아에서 고지혈증과 Apolipoprotein E 다형성의 관계)

  • Yoon, Jung Min;Lim, Jae Woo;Cheon, Eun Jung;Ko, Kyoung Og
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • Purpose : Apolipoprotein E (Apo E) plays a major role in lipoprotein metabolism and lipid transport. Many investigators have described that Apo E polymorphisms is one of the most important genetic determinants for cardiovascular disease. The purpose of this study was to evaluate the association between Apo E polymorphisms and serum lipid profiles in obese adolescent. Methods : We measured the serum concentrations of glucose, apolipoprotein (Apo) A1, Apo B, total cholesterol (TC), triglyceride (TG), HDL and LDL-cholesterol after overnight fasting in obese adolescent. Apo E polymorphisms were determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results : 86 obese adolescents participated in this study. The body mass index (BMI) of participants were excess of 95 percentile by age and sex. Male to female ratio was 1.7 and mean age of study group was $16.2{\pm}1.8\;years$. Mean BMI was $27.4{\pm}2.5kg/m^2$. The frequency of ${\varepsilon}2$, ${\varepsilon}3$ and ${\varepsilon}4$ allele were 8.1%, 87.2% and 4.7% respectively. Study populations were classified into the following three genotypes 1) Apo E2 group (n=13, 15.1%) carrying either the ${\varepsilon}2/{\varepsilon}2$ or ${\varepsilon}2/{\varepsilon}3$ 2) Apo E3 group (n=65, 75.6%) carrying the most frequent ${\varepsilon}3/{\varepsilon}3$ 3) Apo E4 group (n=8, 9.3%) carrying either the ${\varepsilon}3/{\varepsilon}4$ or ${\varepsilon}4/{\varepsilon}4$. No differences were found among Apo E genotypes concerning age, sex, weight, height and BMI. Apo B and LDL-cholesterol concentrations were significantly higher in the Apo E4 group (P<0.05). No association were found between Apo E genotypes and glucose, Apo A1, TC, TG and HDL. Conclusions : We confirmed that serum concentrations Apo B and LDL-cholesterol were influenced by Apo E genotypes. Apo E polymorphisms seems to influence some alteration of lipid metabolism associated with obesity in adolescent.