• Title/Summary/Keyword: 물액적

Search Result 98, Processing Time 0.05 seconds

Combustion characteristics of water-in-oil emulsion droplets (물-경유 유화연료 액적의 연소특성에 관한 연구)

  • 정종수;신현동
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.34-40
    • /
    • 1989
  • 본 연구에서는 유화연료 액적의 연소시에 나타나는 일반적인 연소특성과 이에 미치는 압력의 영향에 대하여 실험적인 방법으로 연구를 수행하였다. 고압용기내에서 유화연료의 단일 액적을 연소시키면서 그 연소과정을 고속으로 촬영하여 분석하는 한편, 연소과정중의 액적 내부의 온도변화를 측정하였다. 고압 용기내의 압력은 대기압으로부터 10atm까지, 연료에 대한 물의 혼합비는 체적비로 0-20%까지 변화시키면서, 유화연료 액적의 연소특성에 미치는 물의 함량과 압력변화의 영향을 분석하였다.

  • PDF

Characteristics of ignition and micro-explosion for droplets of water-in-fuel emulsion (유화액적 연료의 점화와 미소폭발의 특성)

  • Jeung, Incheol;Lee, Kyung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • The water-in-fuel droplets were applied to investigate the effect of mixing ratio between water and decane, ambient temperature, droplet size and spacing between droplets on ignition and micro-explosion in a heated chamber with high temperature. The ignition temperature of droplet was found lower as the droplet size was increased and the contents of water was decreased. The life time of droplet, however, decreases as the contents of water increases due to the micro-explosion. The occurrence of micro-explosion also increases as the size of droplets and the ambient temperature increase. The flame spread speed gets faster as the contents of water and the number of suspender decreases.

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Numerical Analysis of the Effects of Droplets Characteristics of Water Spray on Fire Suppression (물 분무 액적 특성이 화재진압에 미치는 영향에 대한 수치해석)

  • Lee, Jaiho
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effects of the characteristics of droplets of water spray on suppression of fire were analyzed numerically using fire dynamics simulator (FDS) 6.5.2. Additionally, the fire suppression characteristics by the water spray nozzle, including the extinguishing coefficient (EC), droplet size distribution function (SDF), median volumetric diameter (MVD), and droplets per second (DPS), were evaluated in terms of the decreasing normalized heat release rate (HRR) curve and cooling time. It was observed that with increase in the EC, the normalized HRR curve decreased rapidly, and the changing MVD affected the suppression of fire. In case of mono-disperse, the normalized HRR curve decreased slowly with the increase in DPS. On the contrary, in case of multi-disperse, the normalized HRR curve decreased rapidly even with a small increase in DPS.

Effects of Surface Roughness on Contact Angle of Nanofluid Droplet (표면조도가 나노유체 액적의 접촉각에 미치는 영향)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.559-566
    • /
    • 2013
  • The effects of solid surface roughness on the contact angle of a nanofluid droplet were experimentally investigated. The experiments were conducted using the solid surface of a 10 mm cubic copper block and the nanofluid of water mixed with CuO nanoparticles. The experimental results showed that the contact angles of nanofluid droplets were lower than those of water droplets and that the contact angle of the nanofluid droplet increased with the solid surface roughness. Furthermore, it was found that the contact angles of water droplets on the solid surface quenched by both water and the nanofluid were lower than those of water droplets on the pure solid surface. However, significant differences were not observed between the contact angles on the solid surfaces quenched by water and the nanofluid.

Experimental Study of Evaporation of Nanofluid Droplet (나노유체 액적의 증발에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.647-653
    • /
    • 2013
  • The evaporation characteristics of nanofluid droplets on a heated solid surface were experimentally investigated. The experiments were conducted using pure water and a nanofluid of water mixed with CuO nanoparticles, and the solid surface was made of a copper block heated by a nine cartridge heater. The experimental results showed that the evaporation rate of the nanofluid droplet was higher than that of the pure water droplet on the heated solid surface because nanoparticles increased the thermal conductivity of the nanofluid. Furthermore, it was found that the evaporation rate of the nanofluid droplet increased with the solid surface roughness. This may be because the actual area of the liquid-solid interface increased with the solid surface roughness.

An Experimental Study on the Cooling of Unburned Surface due to Water Droplet (물액적에 의한 미연소면의 냉각에 관한 실험적 연구)

  • 방창훈;김정수;예용택
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.13-18
    • /
    • 2000
  • The objective of the present work is to examine the cooling characteristics of water droplet on the unburned surface. The hot solid surface material used brass, carbon steel and copper at temperature ranging from 70 to $116^{\circ}$. the droplet size is from 2.4 mm to 3.0 mm. The CCD camera was used to record the evaporation histories of the droplets. and the evaporation time of the droplet on the hot solid surface could be determined by using frame-by-frame analysis of the video records. It is found that during the droplet evaporation process for copper the temperature remains nearly constant, whereas for carbon steel the temperature continuously decreases about $1^{\circ}$. During the droplet evaporation process on the hot solid surface, regardless of solid materials, nondimensional droplet volume decreases nondimensional evaporation time increases.

  • PDF

Wetting Characteristics of Water Droplet on the Solid Surfaces with Variable Pillar-Type Nanostructures (다양한 기둥 타입을 가지는 나노 구조물 고체 표면에서의 물 액적 젖음 특성)

  • Yoo, Min Jung;Kwon, Tae Woo;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.659-666
    • /
    • 2016
  • A numerical study, using the molecular dynamics simulation method, was carried out to investigate the wetting characteristics of water droplets on a solid square pillar surface with variable periodic edge length patterns at the nanoscale. In this study, the pillar plane was supposed to be rectangular or square shaped. In addition, the surface area was increased while the shape of the pillar plane was kept fixed. In the case of the square pillar, the edge length increased from $4.24{\AA}$ to $12.72{\AA}$. Also, the rectangular pillar had two types of length edges. In this case, one edge length was fixed at $8.48{\AA}$ and the other edge length was increased from $4.24{\AA}$ to $12.72{\AA}$. Through these length changes, the hydrophobicity and hydrophilicity of a water droplet on the variable pillar surfaces were analyzed.

A Study on the Droplet Formation of Liquid Metal in Water-Mercury System as a Surrogate of Molten Salt-Liquid Metal System at Room Temperature (용융염-액체금속 계의 대용물인 물-수은 계에서 액체금속 액적의 생성에 대한 연구)

  • Kim, Yong-il;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.165-172
    • /
    • 2018
  • As an approach for estimation of the droplet size in the molten salt-liquid metal extraction process, a droplet formation experiment at room temperature was conducted to evaluate the applicability of the Scheele-Meister model with water-mercury system as a surrogate that is similar to the molten salt-liquid metal system. In the experiment, droplets were formed through the nozzle and the droplet size was measured using a digital camera and image analysis software. As nozzles, commercially available needles with inner diameters (ID) of 0.018 cm and 0.025 cm and self-fabricated nozzles with 3-holes (ID: 0.0135 cm), 4-holes (ID: 0.0135 cm), and 2-holes (ID: 0.0148 cm) were used. The mercury penetration lengths in the nozzles were 1.3 cm for the needles and 0.5 cm for the self-fabricated nozzles. The droplets formed from each nozzle maintained stable spherical shape up to 20 cm below the nozzle. The droplet size measurements were within a 10% error range when compared to the Scheele-Meister model estimates. The experimental results show that the Scheele-Meister model for droplet size estimation can be applied to nozzles that stably form droplets in a water-mercury system.

Study of the Internal Flow and Evaporation Characteristic Inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동을 이용한 가열된 고체표면 위 증발하는 액적의 내부유동 제어연구)

  • Park, Chang-Seok;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.37-46
    • /
    • 2017
  • Thermal Marangoni flow has been observed inside droplets on heated surfaces, finally resulting in a coffee stain effect. This study aims to visualize and control the thermal Marangoni flow by employing periodic vertical vibration. The variations in the contact angle and internal volume of the droplet as it evaporates is observed by using a combination of continuous light and a still camera. With regard to the internal velocity, the particle image velocimetry system is applied to visualize the internal thermal Marangoni flow. In order to estimate the internal temperature gradient and surface tension on the surface of a droplet, the theoretical model based on the conduction and convection theory of heat transfer is applied. Thus, the internal velocity increases with an increase in plate temperature. The flow directions of the Marangoni and gravitational flows are opposite, and hence, it may be possible to control the coffee stain effect.