DOI QR코드

DOI QR Code

Experimental Study of Evaporation of Nanofluid Droplet

나노유체 액적의 증발에 관한 실험적 연구

  • Kim, Yeung Chan (Dept. of Mechanical & Automotive Engineering, Andong Nat'l Univ.)
  • 김영찬 (안동대학교 기계자동차공학과)
  • Received : 2012.12.27
  • Accepted : 2013.05.29
  • Published : 2013.07.01

Abstract

The evaporation characteristics of nanofluid droplets on a heated solid surface were experimentally investigated. The experiments were conducted using pure water and a nanofluid of water mixed with CuO nanoparticles, and the solid surface was made of a copper block heated by a nine cartridge heater. The experimental results showed that the evaporation rate of the nanofluid droplet was higher than that of the pure water droplet on the heated solid surface because nanoparticles increased the thermal conductivity of the nanofluid. Furthermore, it was found that the evaporation rate of the nanofluid droplet increased with the solid surface roughness. This may be because the actual area of the liquid-solid interface increased with the solid surface roughness.

본 연구에서는 산화구리(CuO) 나노분말과 순수 물을 혼합하여 제조한 나노유체를 이용하여 가열된 고체표면에 있어서 나노유체 액적의 증발특성에 대한 실험적 연구를 수행하였다. 실험결과로부터 가열된 표면에서 나노유체 액적의 증발속도는 순수 물 액적보다 증발속도가 약간 증가하는 경향이 있음을 알 수 있었으며, 이는 나노유체에 포함된 나노입자가 유체의 열전도도를 향상시켜 고체 표면에서 액적으로의 열전달이 촉진되었기 때문인 것으로 판단된다. 또한 고체의 표면조도가 커질수록 액적의 증발속도가 약간 증가하였으며, 이는 고체의 표면조도가 커질수록 고체-액체의 접촉 면적이 증가하여 열전달이 촉진되었기 때문인 것으로 추정된다.

Keywords

References

  1. Qu, W. and Mudawar, I., 2003, "Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sink," Int. J. of Heat & Mass Transfer, Vol. 46, pp. 2755-2771. https://doi.org/10.1016/S0017-9310(03)00041-3
  2. Kim, J. H., You, S. M. and Choi, U. S., 2004, "Evaporative Spray Cooling of Plain and Microporous Coated Surfaces," Int. J. of Heat & Mass Transfer, Vol. 47, pp. 3307-3315. https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.018
  3. Hsieh, C. C. and Yao, S. C., 2006, "Evaporative Heat Transfer Characteristics of a Water Spray on Micro-Structured Silicon Surfaces," Int. J. of Heat & Mass Transfer, Vol. 49, pp. 962-974. https://doi.org/10.1016/j.ijheatmasstransfer.2005.09.013
  4. Silk, Eric C., Kim, J. and Kiger, K., 2006, "Spray Cooling of Enhanced Surfaces (Impact of Structured Surface Geometry and Spray Axis Inclination)," Int. J. of Heat & Mass Transfer, Vol. 49, pp. 4910-4920. https://doi.org/10.1016/j.ijheatmasstransfer.2006.05.031
  5. Kim, Y. C. and Yun, S. M., 2007, "Study on Correlation of Droplet Flow rate and Film Boiling Heat Transfer in Spray Cooling," Trans. Korean Soc. Mech. Eng. B, Vol. 31-4, pp. 335-340. https://doi.org/10.3795/KSME-B.2007.31.4.335
  6. Kim, Y. C., 2010, "Effects of Micro-fin structure on Spray Cooling Heat Transfer in Forced Convection and Nucleate Boiling Region," Trans. Korean Soc. Mech. Eng. B, Vol. 34-11, pp. 983-990. https://doi.org/10.3795/KSME-B.2010.34.11.983
  7. Kim, Y. C., 2013, "Effects of Surface Roughness on Contact Angle of Nano-fluid Droplet," Trans. Korean Soc. Mech. Eng. B, Vol. 37-6, pp. 559-566. https://doi.org/10.3795/KSME-B.2013.37.6.559
  8. Choi, U. S., 1995, "Enhancing Thermal Conductivity of Fluid with Nanoparticles," ASME FED, Vol. 231, pp. 99-105.