• Title/Summary/Keyword: 물성예측

Search Result 711, Processing Time 0.025 seconds

A basic study on the prediction of local material behavior of composite bone plate for metaphyseal femur fractures (대퇴골 골 간단 부 골절치료용 복합재료 고정판의 국부적 거동 예측을 위한 기초 연구)

  • Yoo, Seong-Hwan;Son, Dae-Sung;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.6-11
    • /
    • 2011
  • This paper presents an estimating method for local property changes and failure prediction of composite materials experiencing large shear deformation during draping process. The bone plate for the metaphyseal femur fracture was chosen to apply the presented method because it has complex geometry. The local property changes due to macro-/microscopic deformations of fabric composites during draping process were evaluated by various tests and the result was applied to predict static/fatigue behaviors of the bone plate. This paper was expected to present useful information on the design of composite structures with complex geometry and their performance evaluation.

Prediction of the Rhelolgical of Soybean Curd during Storage by using WLF equation (저장중의 두부에 WLF식을 이용한 물성 변화 예측에 관하여)

  • Jang, Won-Young;Kim, Byung-Yong;Kim, Myoung-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.193-198
    • /
    • 1995
  • The changes in the rheological properties of soybean curd upon the various storage temperatures ($5{\sim}25^{\circ}C$) were measured by the stress-relaxation test and analysed by time-temperature superposition theory. As the storage temperature was lower, higher initial and equilibrium stress of soybean curd were observed. When the stress-relaxation curves were moved horizontally by using the shift-factor on the basis of reference temperature, the master curve was obtained. By applying master curve and shift-factor to the WLF (Williams-Landel-Ferry) equation, activation energy (30kcal/mol) was calculated and storage time at the specific temperature could be predicted, suggesting the equivalent shelf-life of soybean curd texture.

  • PDF

Prediction of Preceding Displacement of a Soil-Tunnel by Displacement Monitoring using Horizontal Inclinometer (수평경사계를 이용한 토사터널의 선행변위 예측)

  • Kim, Chu-Hwa;Chae, Young-Su;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.355-365
    • /
    • 2008
  • Displacement caused by tunneling is difficult to predict since it is affected by many factors such as ground condition, excavation method and supplementary method of reinforcement. In this study, horizontal inclinometer was employed to monitor ground settlements above a tunnel face before and after the excavation. Monitoring results were analyzed to predict the preceding displacement and settlement of the surface structures. The result of the analysis can be used to establish a proper counter measure which keeps the serviceability of the surface structures. Based on the analysis of the monitoring result, ground properties of the site were deduced and the influence of the tunnel excavation on the settlement of the foundation above the tunnel is analyzed.

Estimation of Thermal Conductivity and Diffusivity by an Inverse Analysis (역해석에 의한 열전도율 및 확산율 예측)

  • Na, Jae-Jeong;Lee, Jung-Min;Kang, Kyung-Taik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.397-402
    • /
    • 2012
  • The objective of this study is the estimation of the two unknown thermal conductivity and thermal diffusivity by an inverse heat conduction analysis using the Levenberg-Marguardt method. One dimensional formulation of heat conduction problem in the model was applied. Two point transient temperature of test pieces and heat flux of inflow were measured under the high enthalpy flow environment. Estimated thermal conductivity and thermal diffusivity by an inverse analysis were compared with the known values of graphite test piece. It showed the effectiveness of proposed experimental inverse analysis.

  • PDF

Quasi-Analytical Method of C/SiC Material Properties Characterization (C/SiC 재료의 물성 측정을 위한 준 해석적 방법)

  • Kim, Yeong-K.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.437-440
    • /
    • 2010
  • This paper represents a simple and effective calculation method to predict the orthotropic engineering constants for C/SiC woven fabric composite. The method, a quasi-analytical method using the modified equivalent laminated model, idealizes the woven fabric structure as a symmetric three-ply laminate to utilize a classical laminated plate theory. The required initial parameters are in-plane modulus from experiments and crimp ratio of the woven fabric. This study shows its feasibility by demonstrating example to calculate the engineering constants to thickness direction needed for three dimensional thermo-mechanical stress calculations.

  • PDF

Natural Aging Properties Analysis of HTPB Propellant (HTPB계 고체추진제의 자연노화 물성 분석)

  • Park, Jung-Ho;Ryu, Nam-Sun;Park, Jae-Beom;Jung, Gyoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • Hydroxy-terminated polybutadiene (HTPB) propellants of solid rocket motors age differently under different storage temperatures. The shelf life of a solid rocket motor depends on the aging ratio of the HTPB propellant; it can be estimated through the viscoelastic properties by an aging test. This study analyzed the initial and natural aging properties during long-term storage. The initial properties were obtained from characterization and accelerated test results. The test results were obtained by analyzing the strain on cylindrical grains when a thermal load was applied.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

Geometric Modeling of the Skin-Stringer Integrated Panel with Three-Dimensional Woven Composite (3차원 직조 복합재료 스킨-스트링거 일체형 패널의 기하학적 모델링)

  • Yeonhi, Kim;Hiyeop, Kim;Jungsun, Park;Joonhyung, Byun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.8-17
    • /
    • 2022
  • This paper presents a novel geometric modeling technique to predict the mechanical properties of an aircraft wing's skin-stringer integrated panel. Due to mechanical and adhesive fastening, this panel is vulnerable to stress concentration and debonding, so we designed it to integrate the skin and stringer using three-dimensional woven composites. Geometric modeling was conducted by measuring the geometric parameters of the specimen and defining the pattern of the yarns as functions. We used a weighted average model with iso-strain and iso-stress assumptions to predict the mechanical properties of the panel parts. We then compared the results of a finite element analysis with a compression test to verify the accuracy of our model. Our proposed technique proved to be more efficient than the traditional experimental method for predicting the mechanical properties of skin-stringer integrated panels.

Development and Calibration of a Permanent Deformation Model for Asphalt Concrete Based on Shear Properties (아스팔트 콘크리트의 전단 물성을 고려한 영구변형 모형 개발 및 보정)

  • Lee, Hyun-Jong;Baek, Jong-Eun;Li, Qiang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This study developed a permanent deformation model for asphalt concrete based on shear properties. Repeated load triaxial compression (RLTC), triaxial compressive strength, and indirect tension strength tests were performed for the three types of asphalt mixtures at various loading and temperature conditions to correlate shear properties of asphalt mixtures to rutting performance. For the given mixtures, as testing temperature increased, cohesion decreased, but friction angle was insensitive to temperature at $40^{\circ}C$ or higher. It was observed that deviatoric stress, confining pressure, temperature, and load frequency affected the permanent deformation of asphalt mixtures significantly. The permanent deformation model based on shear stress to strength ratio and loading time was developed using the laboratory test results and calibrated using accelerated pavement test data. The proposed model was able to predict the permanent deformation of the asphalt mixtures in a wide range of loading and temperature conditions with constant model coefficients.

Estimation of Elastic Plastic Behavior Fracture Toughness Under Hydrogen Condition of Inconel 617 from Small Punch Test (Inconel 617 재료의 소형펀치 실험을 이용한 수소취화처리재의 탄-소성 거동 및 파괴인성 유추)

  • Kim, Nak Hyun;Kim, Yun Jae;Yoon, Kee Bong;Ma, Young Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.753-760
    • /
    • 2013
  • The hydrogen embrittlement of metallic materials is an important issue from the viewpoint of structural integrity. In this regard, the estimation of mechanical properties and fracture toughness under hydrogen conditions provides very important data. This study provides an experimental validation of the approach for simulating the small punch of Inconel 617 using finite element damage analysis, as recently proposed by the authors, and applies an inverse method for the determination of the constitutive tensile behavior of materials. The mechanical properties obtained from the inverse method are compared with those obtained from the tensile test and validated. The mechanical properties and fracture toughness are predicted by using the inverse method and finite element damage analysis.