DOI QR코드

DOI QR Code

Geometric Modeling of the Skin-Stringer Integrated Panel with Three-Dimensional Woven Composite

3차원 직조 복합재료 스킨-스트링거 일체형 패널의 기하학적 모델링

  • Yeonhi, Kim (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Hiyeop, Kim (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Jungsun, Park (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Joonhyung, Byun (Composite Research Division, Korea Institute of Materials Science)
  • 김연희 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 김휘엽 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 박정선 (한국항공대학교 항공우주 및 기계공학부) ;
  • 변준형 (한국재료연구원 복합재료연구본부)
  • Received : 2022.07.29
  • Accepted : 2022.11.09
  • Published : 2022.12.31

Abstract

This paper presents a novel geometric modeling technique to predict the mechanical properties of an aircraft wing's skin-stringer integrated panel. Due to mechanical and adhesive fastening, this panel is vulnerable to stress concentration and debonding, so we designed it to integrate the skin and stringer using three-dimensional woven composites. Geometric modeling was conducted by measuring the geometric parameters of the specimen and defining the pattern of the yarns as functions. We used a weighted average model with iso-strain and iso-stress assumptions to predict the mechanical properties of the panel parts. We then compared the results of a finite element analysis with a compression test to verify the accuracy of our model. Our proposed technique proved to be more efficient than the traditional experimental method for predicting the mechanical properties of skin-stringer integrated panels.

항공기 날개에 사용되는 스킨-스트링거 패널은 기계적 체결과 접착 체결로 인하여 응력 집중과 접착 분리가 발생할 수 있다. 이를 고려하여, 3차원 직조 복합재료를 이용해 스킨과 스트링거를 일체시킨 패널을 설계하였다. 본 논문에서는 일체형 패널의 기계적 물성을 예측하기 위하여 기하학적 모델링 기법을 제안하였다. 시편의 기하학적 변수를 측정하고 섬유 다발의 패턴을 함수식으로 정의해 기하학적 모델링을 수행하였다. 이를 검증하기 위하여 iso-strain, iso-stress 가정을 사용한 가중평균모델을 통해 각 부재의 기계적 물성을 예측하고 유한요소해석을 수행해 압축시험 결과와 비교하였다. 제안한 기하학적 모델링 기법을 통해 스킨-스트링거 일체형 패널의 기계적 물성을 실험적 방법보다 효율적으로 예측하였다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (과제 번호: 2022R1A6A1A03056784)

References

  1. S. D. Thoppul, J. Finegan and R. F. Gibson, "Mechanics of mechanically fastened joints in polymer-matrix composite structure - A review," Composites Science and Technology, vol. 69, pp. 301-329, March 2009. https://doi.org/10.1016/j.compscitech.2008.09.037
  2. U. A. Khashaba, I. A. El-Sonbaty, A. I. Selmy and A. A. Megahed, "Machnability analysis in drilling woven GFR/epoxy composites: Part I- Effect of machining parameters," Composites Part A: Applied Science and Manufacturing, vol. 41, pp. 391-400, March 2010. https://doi.org/10.1016/j.compositesa.2009.11.006
  3. I. H. Marshall, W. S. Arnold, J. Wood and R. F. Mousley, "Observations on bolted connections in composite structures," Composite Structures, vol. 13, pp. 133-151, 1989. https://doi.org/10.1016/0263-8223(89)90051-2
  4. A. Riccio, A. Russo, A. Raimondo, P. Cirillo and A. Caraviello, "A numerical/experimental study on the induction heating of adhesive for composite materials bonding," Materials today communications, vol. 15, pp. 203-213, June 2018. https://doi.org/10.1016/j.mtcomm.2018.03.008
  5. Z. Mikulik, D. W. Kelly, B. G. Prusty and R. S. Thomson, "Prediction of flange debonding in composite stiffened panels using an analytical crack tip element-based methodology," Composite Structures, vol. 85, pp. 233-244, Oct. 2008.
  6. A. P. Mouritz, M. K. Bannister, P. J. Falzon and K. H. Leong, "Review of applications for advanced three-dimensional fibre textile composites," Composites Part A: Applied Science and Manufacturing, vol. 30, pp. 1445-1461, Dec. 1999. https://doi.org/10.1016/S1359-835X(99)00034-2
  7. S. Yan, X. Zeng, L. Brown and A. Long, "Geometric modeling of 3D woven preforms in composite T-joints," Textile Research Journal, vol. 88, pp. 1862-1875, Aug. 2018. https://doi.org/10.1177/0040517517712098
  8. E. Archer, AT. Mclhagger, E. Harkin-Jones, C. Ralph, C. Mc Garrigle, G. Neale, M. Dahale and A. Hardman, "3D weaving and consolidation of carbon fibre T-piece stringer," ECCM18 - 18th European Conference on Composite Materials, June 2018.
  9. G. Zhou, R. Pan, C. Li, D. Cai and X. Wang, "Compressive behavior of 3D woven composite stiffened panels: experimental and numerical study," Applied Composite Materials, vol. 24, pp. 771-785, 2017. https://doi.org/10.1007/s10443-016-9544-x
  10. M. N. Saleh, A. Yudhanto, P. Potluri, G. Lubineau and C. Soutis, "Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture," Composites Part A: Applied Science and Manufacturing, vol. 90, pp. 577-588, Nov. 2016. https://doi.org/10.1016/j.compositesa.2016.08.028
  11. M. N. Saleh and C. Soutis, "Recent advancements in mechanical characterisation of 3D woven composites," Mechanics of Advanced Materials and Modern Processes, vol. 3, July 2017.
  12. A. C. Long and L. P. Brown, "Modelling the geometry of textile reinforcements for composites for TexGen," Composite reinforcements for optimum performance, pp. 239-264, 2011.
  13. X. Zeng, L. P. Brown, A. Endruweit, M. Matveev and A. C. Long, "Geometrical modelling of 3D woven reinforcements for polymer composite: Prediction of fabric permeability and composite mechanical properties," Composites Part A: Applied Science and Manufacturing, vol. 56, pp. 150-160, Jan. 2014. https://doi.org/10.1016/j.compositesa.2013.10.004
  14. C. F. Gerald and P. O. Wheatley, Applied numerical analysis, Pearson Education India, 7th ed., 2004.
  15. Y. G. Song, "A study on the predicting mechanical properties of 3D woven composites," Masters dissertation, Korea Aerospace University, Goyang, 2019.
  16. A. F. Kreger and G. A. Teters, "Use of averaging methods to determine the viscoelastic properties of spatially reinforced composites," Mechanics of Composite Materials, vol. 15, pp. 377-383, 1980. https://doi.org/10.1007/BF00605861