• Title/Summary/Keyword: 물리 화학적 특성

Search Result 2,854, Processing Time 0.032 seconds

금속 프탈로시아닌 유도체의 제조 및 그의 소취 특성(1)

  • 김애경;최창남;조동련
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.338-341
    • /
    • 1998
  • 악취의 주원인은 염기성 취기의 대표인 암모니아, 산성 취기의 대표인 황화수소, 그리고 트리메틸아민이며, 이들은 법정 악취물질로써 지정되어 있다$^1$. 이와 같은 악취를 없애는 소취기구는 활성탄 및 제오라이트 등과 같은 물질에 대한 물리적 흡착에 의한 것, 산화제 및 환원제에 의한 화학반응에 의한 것, 미생물 및 효소에 의한 생물학적 반응에 의한 것으로 대별되지만, 물리 흡착은 재방출의 문제가 있고 화학 및 생물학적 반응에는 소취성분 자체의 유해성 및 반응후 물질의 유해성이 문제가 되는 경우가 있다.(중략)

  • PDF

Preparation and Characterization of High Performance Activated Carbon Fibers from Stabilized PAN fibers (PAN계 안정화섬유로부터 고기능성 활성탄소섬유의 제조 및 특성)

  • 임연수;유기상;문숙영;정윤중;김명수;함현식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.5
    • /
    • pp.468-474
    • /
    • 2003
  • Activated carbon fibers were prepared from stabilized PAN fibers by physical and chemical activation to compare their characteristics. In this study, stabilized PAN fibers were activated by physical activation with steam and CO$_2$, and by chemical activation with KOH. The fabricated activated carbon fibers were evaluated and compared such as specific surface area, pore size distribution, pore volume, and amount of iodine adsorption. In the steam activation, a specific surface area of 1635 m$^2$/g was obtained after heat treatment at 990$^{\circ}C$. Otherwise, in the CO$_2$ activation, produced activated carbon fibers had been a specific surface area of 671 m$^2$/g after heat treatment at 990$^{\circ}C$. In chemical activation using KOH, a specific surface area of 3179 m$^2$/g was obtained with a KOH/ stabilized PAN fiber ratio of 1.5 : 1 at 900$^{\circ}C$. Nitrogen adsorption isotherms for fabricated activated carbon fibers showed type I and transformation from type I and II in the Brunauer-Deming-Deming-Teller (B.D.D.T) classification. Increasing specific surface area Increased the amount of iodine adsorption in both activation methods. Because the ionic radius of iodine was smaller than the interior micropore size of activated carbon fibers.

Physical and Chemical Variation of Sedimentary Rocks due to Weathering (풍화에 의한 퇴적암의 물리-화학적 변화)

  • Kim, Young-Su;Heo, No-Young;Jeong, Woo-Seob;Rui, Da-Hu;Lee, Jea-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.49-60
    • /
    • 2002
  • A study on mineral composition and chemical component governing of weathering process is necessary to know the weathering characteristics of sedimentary rocks. In this study, a mineral and chemical component analysis, and physical and engineering characteristic tests were conducted to find out the characteristics of sedimentary rocks in Daegu, according to the weathering degree of sedimentary rock. Test results show that the mineral composition of rock, such as Albite (Ab), Muscovite (Ms), Magenetite (Mt) and the chemical composition of $A_2O_3$, CaO, $Na_2O$, $K_2O$, MgO and so on are closely related to the weathering. Based on the test results, we illustrated the quantitative application of weathering decision for the sedimentary rocks.

  • PDF

Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties (소수성의 이미다졸리움 이온성 액체 합성과 이들의 물리화학적 특성 조사)

  • Salman, Muhammad;Lee, Sooyoung;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.277-282
    • /
    • 2021
  • Two hydrophobic imidazolium based ionic liquids including 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6 and 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6 having the same anion and different cation parts were synthesized. The structural composition of these ionic liquids were confirmed with Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Their physiochemical properties such as viscosity, ionic conductivity and thermal stability alongside electrochemical potential window range for both ionic liquid electrolytes were characterized and compared to each other. The overall results revealed that [BzBIM]PF6 has higher thermal and electrochemical stabilities and viscosity than that of [PBIM]PF6 probably due to the presence of benzyl ring in the imidazolium cation providing strong intermolecular π-π interactions.

Physical Properties of the Horticultural Substrate According to Mixing Ratio of Peatmoss, Perlite and Vermiculite (원예용 상토 재료 피트모스, 펄라이트, 버미큘라이트의 혼합비율에 따른 물리적 특성 변화)

  • Kim, Hyuck-Soo;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.321-330
    • /
    • 2011
  • The physical properties of horticultural substrate are important for optimal plant growth. The physical properties should be properly maintained during the crop growing season for producing higher yield. This experiment was carried out to evaluate the physical properties of different mixtures from various raw materials as horticultural substrates. The mixtures at the different ratios of peatmoss, perlite and vermiculite subjected to 10:0:0, 8:2:0, 6:4:0, 4:6:0, 2:8:0, 0:8:2, 0:10:0, 0:6:4, 0:4:6, 0:2:8, 8:0:2, 0:0:10, 6:0:4, 4:0:6, 2:0:8, 2:6:2, 2:4:4, 4:2:4, 4:4:2, 6:2:2 and 2:2:6 were prepared and analyzed according to two methods of the European Standardization (EN) and Rural Development Administration (RDA). The optimum range of physical properties of a specific horticultural substrate can be predicted using physical-property-triangle. This triangle can also be used to convert a physical property from the EN method to that from the RDA method. Results showed that the mixture at a ratio of > 60% peatmoss, in most cases, is in the range of optimum physical condition for plant growth. We conclude that the developed physical-property-triangle can be suitable to suggest the optimum ratios of horticultural substrates used in this study.

Utilization of Wood by-product and Development of Horticultural Growing Media (임산부산물을 이용한 원예용 혼합상토 개발)

  • Jung, Ji Young;Lim, Ki-Byung;Kim, Ji Su;Park, Han Min;Yang, Jae-Kyung
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.435-442
    • /
    • 2015
  • The main objective of this work was to identify and evaluate possible substrate alternatives or amendments to peat moss. This study involves the physical and chemical characterization and growth test of wood sawdust and wood fiber in order to evaluate their use as components of horticultural media. The carbohydrate content, C/N ratio, pH, phenolic compound, total porosity and water holding capacity were 58.9%, 425.1, 4.8, 181.8 ($mg{\cdot}g^{-1}$), 82.5% and 47.1% in wood sawdust and 41.1%, 240.8, 5.9, 29.8 ($mg{\cdot}g^{-1}$), 90.6% and 56.2% in wood fiber, respectively. Wood sawdust (K, $998.0mg{\cdot}100g^{-1}$ ; Ca, $1196.0mg{\cdot}100g^{-1}$; Mg, $105.6mg{\cdot}100g^{-1}$) and wood fiber (K, $1250.1mg{\cdot}100g^{-1}$; Ca, $1982.6mg{\cdot}100g^{-1}$; Mg, $173.1mg{\cdot}100g^{-1}$) showed adequate mineral elements properties compared to peat moss (K, $0.02mg{\cdot}100g^{-1}$; Ca, $0.57mg{\cdot}100g^{-1}$; Mg, $0.13mg{\cdot}100g^{-1}$) for their use as growing media. The mixtures of the horticultural media were prepared using different substrate as wood sawdust and wood fiber to grow Chinese cabbage (Brassica campestris L.) in a greenhouse. The seed germination, leaf area and stem height were 75%, $0.50cm^2$ and 2.8 cm in PS substrate (containing 30% peat moss, 10% perlite and 60% wood sawdust) and 95%, $0.65cm^2$ and 3.3 cm in PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber), respectively. The seed germination and stem height of the PF substrate (containing 30% peat moss, 10% perlite and 60% wood fiber) was higher than those in peat moss (control). Utilization of wood by-product can be considered as an alternative media component to substitute the widely using expensive peat moss.

Thermal and physiochemical properties of faba bean (Vicia faba L.) flour and starch (Faba bean 가루 및 녹말의 열역학적 특성과 물리화학적 특성)

  • Kim, Hui-Yun;Choi, Yohan;Jo, Eun-Jeong;Baik, Moo-Yeol;Choi, Hyun-Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.4
    • /
    • pp.409-414
    • /
    • 2020
  • In this study, we conducted a physiochemical property analysis using commercial faba bean flour (CFBF), faba bean flour (FBF), and faba bean starch (FBS). We observed that the FBS granules were elliptical and cracked on the surface. Moreover, FBS showed significantly lower solubility and apparent viscosity than FBF and CFBF. With respect to the pasting properties, FBS exhibited a peak viscosity of 1349.3 cP at 94.8℃ and a breakdown of 42.7 cP, whereas FBF and CFBF displayed no pasting properties. The FBS gelatinization enthalpy (12.9 J/g) was relatively high compared with the values obtained for FBF and CFBF (5.9 and 4.6 J/g, respectively). The FBS X-ray diffraction patterns showed a C-type pattern with peaks at diffraction angle (2θ) of 5.9°, 15.2°, 17.3°, and 23.1°, which were the same in FBF and CFBF with relatively low peak intensity. These results represent basic data for using faba bean as a food material.

Dyeing Properties on Modificated Wool by Micro-split (물리화학적 처리에 의한 마이크로 피브릴화 양모의 염색특성)

  • Choi, Woo-Hyuk;Kim, Mi-Kyung;Jeon, Byung-Dae;Park, Sang-Un
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.58-58
    • /
    • 2011
  • 현 의류 섬유산업의 트렌드는 친환경, 무공해, 인체친화, 고감성, 고급스러움 등을 표현할 수 있는 제품으로의 전환이 이루어지고 있으며, 최근 부드럽고, 편안하고, 모던한 특징 및 내추럴한 느낌을 나타내는 천연섬유에 대한 요구가 더욱 늘어나고 있다. 양모 섬유는 천염섬유 중 많은 비중을 차지하고 있는 단백질 섬유로서, 이를 이용한 다양한 직물과 의류제품은 국내외적으로 유명 브랜드 바이어와 지속적으로 내수와 수출이 이루어지는 대표적 섬유이다. 그러나 양모 소재에 특유의 구조와 형태로 소재간 섬도차로 인해 고급섬유에의 복합시 물리적, 감성적 이질감으로 상품화가 제한되고 있으며, 소비자 및 바이어들은 기존 보다 더욱 부드러운 고급감의 양모소재를 선호하고 있다. 이에 천염섬유 중에서도 세섬도 생산의 한계가 있는 양모섬유에 대해 양모섬유의 끝단을 마이크로 분활화 및 세섬화를 가능하게 함으로서 새로운 고감성 및 고급감을 부여할 수 있을 것이며, 본 연구에서는 산 및 초음파 등의 물리화학적 분할 기술을 적용하여 부분적 피브릴화 세섬화된 양모소재에 대한 염가공 특성을 기존 양모소재와 비교 함으로서 개질 양모소재의 제품화 실용성 여부를 검토하였다.

  • PDF

Studies on the Physicochemical Characteristics of Sesame with Roasting Temperature (볶음과정에서의 참깨의 물리화학적 특성변화)

  • Kim, Hyeon-Wee;Jeong, So-Young;Woo, Sun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1137-1143
    • /
    • 1999
  • The change of physicochemical characteristics of sesame with roasting temperature$(110^{\circ}C{\sim}230^{\circ}C)$ were investigated to get a useful index which needs to manufacture roasted sesame and sesame oils, In the physicochemical properties of roasted sesame, the contents of moisture, specific volume, oil yields and sesame cakes were changed significantly above $170^{\circ}C$. Fat and protein in sesame cakes were changed slightly. Desirable roasting temperature was $220^{\circ}C$ in considering oil yields and sensory qualities. Total amino acids such as arginine, serine, threonine, lysine. cystine, tyrosine and most of the free amino acids, and sucrose of free sugars were reduced significantly above $170^{\circ}C$ and $190^{\circ}C$. respectively. These reductions of sugar and amino compounds were assumed to play an important role in Maillard reaction for the formation of browning pigment, taste and aroma. It was confirmed that this reaction was pyrolytic degradation which took place in water-deficient and oil-rich system at relatively high temperature.

  • PDF

Physicochemical Properties of Methyl Linoleate Oxidized at Various Temperatures (온도에 따라 산화된 Methyl Linoleate의 물리화학적 특성)

  • Kim, In-Hwan;Kim, Chul-Jin;Kim, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.600-605
    • /
    • 1999
  • Methyl linoleate was oxidized at 60, 90, 120 and $150^{\circ}C$, respectively, with sparging oxygen for different periods of time. On the basis of the peroxide values determined at four temperatures, four heating times were chosen for the analysis of physicochemical parameters, such as peroxide value, total oxidation products, polymer content, viscosity, refractive index and characteristics of thermal degradation by DSC (Differential Scanning Calorimeter). The content of peroxide linkage (C-O-O-C) polymer and ether or carbon to carbon linkage (C-O-C/C-C) polymer were analyzed by High Performance Size Exclusion Chromatography (HPSEC). The polymer formed at four temperatures was qualitatively identified as dimer. The polymer with peroxide linkage (C-O-O-C) were detected from methyl linoleate oxidized at $60^{\circ}C\;and\;90^{\circ}C$, but they were not detected from methyl linoleate oxidized at $120^{\circ}C\;and\;150^{\circ}C$. The enthalpy changes increased as peroxide value increased whereas maximum degradation temperature decreased. The highest correlation coefficients were obtained between maximum degradation temperature $(T_m)$, exothermic enthalpy changes and peroxide value, peroxide linkage (C-O-O-C) polymer content.

  • PDF