Browse > Article
http://dx.doi.org/10.14478/ace.2021.1021

Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties  

Salman, Muhammad (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Lee, Sooyoung (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.32, no.3, 2021 , pp. 277-282 More about this Journal
Abstract
Two hydrophobic imidazolium based ionic liquids including 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6 and 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6 having the same anion and different cation parts were synthesized. The structural composition of these ionic liquids were confirmed with Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Their physiochemical properties such as viscosity, ionic conductivity and thermal stability alongside electrochemical potential window range for both ionic liquid electrolytes were characterized and compared to each other. The overall results revealed that [BzBIM]PF6 has higher thermal and electrochemical stabilities and viscosity than that of [PBIM]PF6 probably due to the presence of benzyl ring in the imidazolium cation providing strong intermolecular π-π interactions.
Keywords
Ionic liquids; Hydrophobic electrolytes; 1-Benzyl-3-butylimidazolium hexafluorophosphate; 1-Pentyl-3-butylimidazolium hexafluorophosphate; Thermal stability; Potential window;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Kermanioryani, M. I. A. Mutalib, Y. Dong, K. C. Lethesh, O. B. Ben Ghanem, K. A. Kurnia, N. F. Aminuddin, and J. M. Leveque, Physicochemical properties of new imidazolium-based ionic liquids containing aromatic group, J. Chem. Eng. Data, 61, 2020-2026 (2016).   DOI
2 H. Matsumoto. In Electrochemical Aspects of Ionic Liquid, pp 43-63, H. Ohno, Ed.; John Wiley & Sons, Inc. (2011).
3 R. P. Putra, H. Horino, and I. I. Rzeznicka, An efficient electrocatalyst for oxygen evolution reaction in alkaline solutions derived from a copper chelate polymer via in situ electrochemical transformation, Catalysts, 10, 233 (2020).   DOI
4 Q. B. Li, J. Y. Jiang, G. F. Li, W. C. Zhao, X. H. Zhao, and T. C. Mu, The electrochemical stability of ionic liquids and deep eutectic solvents, Sci. China Chem., 59, 571-577 (2016).   DOI
5 C. Comminges, R. Barhdadi, M. Laurent, and M. Troupel, Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: Ionic liquids + molecular solvents, J. Chem. Eng. Data, 51, 680-685 (2006).   DOI
6 K. Paduszynski and U. Domanska, Viscosity of ionic liquids: An extensive database and a new group contribution model based on a feed-forward artificial neural network, J. Chem. Inf. Model., 54, 1311-1324 (2014).   DOI
7 H. O. Bourbigou, and L. Magna, Ionic liquids perspectives for organic and catalytic reactions, J. Mol. Catal. A Chem., 182, 419-437 (2002).   DOI
8 C. Hardacre, J. D. Holbrey, S. P. Katdare, and K. R. Seddon, Alternating copolymerisation of styrene and carbon monoxide in ionic liquids, Green Chem., 4, 143-146 (2002).   DOI
9 H. Jin, B. O'Hare, J. Dong, S. Arzhantsev, G. A. Baker, J. F. Wishart, A. J. Benesi, and M. Maroncelli, Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations, J. Phys. Chem. B, 112, 81-92 (2008).   DOI
10 Z. Li, X. Zhang, H. Dong, X. Zhang, H. Gao, S. Zhang, J. Li, and C. Wang, Efficient absorption of ammonia with hydroxyl-functionalized ionic liquids, RSC Adv., 5, 81362-81370 (2015).   DOI
11 H. Luo, S. Dai, and P. V. Bonnesen, Solvent extraction of Sr2+ and Cs+ based on room-temperature ionic liquids containing monoaza-substituted crown ethers, Anal. Chem., 76, 2773-2779 (2004).   DOI
12 J. Pitawala, A. Matic, A. Martinelli, P. Jacobsson, V. Koch, and F. Croce, Thermal properties and ionic conductivity of imidazolium bis(trifluoromethanesulfonyl)imide dicationic ionic liquids, J. Phys. Chem. B, 113, 10607-10610 (2009).   DOI
13 M. Salman and H. J. Lee, Synthesis and electrolyte characterization of 1-benzyl-3-butylimidazolium hydroxide, Appl. Chem. Eng., 31, 603-606 (2020).   DOI
14 M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, Thermal stability of low temperature ionic liquids revisited, Thermochim. Acta, 412, 47-53 (2004).   DOI
15 R. R. Hawker, R. S. Haines, and J. B. Harper, Variation of the cation of ionic liquids the effects on their physicochemical properties and reaction outcome, Targets Heterocycl. Syst. Prop., 18, 141-213 (2015).
16 J. M. Andanson, X. Meng, M. Traikia, and P. Husson, Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids, J. Chem. Thermodyn., 94, 169-176 (2016).   DOI
17 N. V. Plechkova, and K. R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 37, 123-150 (2008).   DOI
18 A. M. O'Mahony, D. S. Silvester, L. Aldous, C. Hardacre, and R. G. Compton, Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids, J. Chem. Eng. Data, 53, 2884-2891 (2008).   DOI
19 J. Salminen, N. Papaiconomou, R. A. Kumara, J. M. Lee, J. Kerr, J. Newman, and J. M. Prausnitz, Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids, Fluid Ph. Equilibria, 261, 421-426 (2007).   DOI
20 N. Papaiconomou, N. Yakelis, J. Salminen, R. Bergman, and J. M. Prausnitz, Synthesis and properties of seven ionic liquids containing 1-methyl-3-octylimidazolium or 1-butyl-4-methylpyridinium cations, J. Chem. Eng. Data, 51, 1389-1393 (2006).   DOI
21 P. A. Hunt, Why does a reduction in hydrogen bonding lead to an increase in viscosity for the 1-butyl-2,3-dimethyl-imidazolium-based ionic liquids?, J. Phys. Chem. B, 111, 4844-4853 (2007).   DOI
22 M. Montanino, F. Alessandrini, S. Passerini, and G. B. Appetecchi, Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices, Electrochim. Acta, 96, 124-133 (2013).   DOI
23 L. G., Q. Zhou, X. Zhang, L. Wang, S. Zhang, and J. Li, Solubilities of ammonia in basic imidazolium ionic liquids, Fluid Phase Equilib., 297, 34-39 (2010).   DOI
24 M. Sureshkumar and C. K. Lee, Biocatalytic reactions in hydrophobic ionic liquids, J. Mol. Catal. B Enzym., 60, 1-12 (2009).   DOI
25 E. Simonetti, M. De Francesco, M. Bellusci, G. T. Kim, F. Wu, S. Passerini, and G. B. Appetecchi, A more sustainable and cheaper one-pot route for the synthesis of hydrophobic ionic liquids for electrolyte applications, ChemSusChem, 12, 4946-4952 (2019).   DOI
26 R. Sulaiman, I. Adeyemi, S. R. Abraham, S. W. Hasan, and I. M. AlNashef, Liquid-liquid extraction of chlorophenols from wastewater using hydrophobic ionic liquids, J. Mol. Liq., 294, 111680 (2019).   DOI
27 C. Wang, Y. Tong, Y. Huang, H. Zhang, and Y. Yang, Selone behavior towards palladium(ii) extraction with hydrophobic ionic liquids and mechanism studies, RSC Adv., 5, 63087-63094 (2015).   DOI
28 H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, and Y. Aihara, Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt, J. Electrochem. Soc., 150, A695 (2003).   DOI
29 X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang, and S. F. Liu, High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport, Angew. Chem. Int. Ed., 60, 4238-4244 (2021).   DOI
30 P. Bonhote, A. P. Dias, N. Papageorgiou, K. Kalyanasundaram, and M. Gratzel, Hydrophobic, highly conductive ambient-temperature molten salts, Inorg. Chem., 35, 1168-1178 (1996).   DOI
31 S. M. Mahurin, T. Dai, J. S. Yeary, H. Luo, and S. Dai, Benzyl-functionalized room temperature ionic liquids for CO2/N2 separation, Ind. Eng. Chem. Res., 50, 14061-14069 (2011).   DOI
32 S. Han, M. Luo, X. L. Zhou, Z. He, and L. P. Xiong, Synthesis of dipentyl carbonate by transesterification using basic ionic liquid [bmIm]OH catalyst, Ind. Eng. Chem. Res., 51, 5433-5437 (2012).   DOI
33 S. A. Dharaskar, K. L. Wasewar, M. N. Varma, D. Z. Shende, and C. Yoo, Synthesis, characterization and application of 1-butyl-3-methylimidazolium tetrafluoroborate for extractive desulfurization of liquid fuel, Arab. J. Chem., 9, 578-587 (2016).   DOI
34 Z. Xue, L. Qin, J. Jiang, T. Mu, and G. Gao, Thermal, electrochemical and radiolytic stabilities of ionic liquids, Phys. Chem. Chem. Phys., 20, 8382-8402 (2018).   DOI
35 H. L. Ngo, K. LeCompte, L. Hargens, and A. B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357-358, 97-120 (2000).   DOI
36 S. Carda-Broch, A. Berthod, and D. W. Armstrong, Solvent properties of the 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid, Anal. Bioanal. Chem., 375, 191-199 (2003).   DOI
37 S. Keskin, D. Kayrak-Talay, U. Akman, and O. Hortacsu, A review of ionic liquids towards supercritical fluid applications, J. Supercrit. Fluid, 43, 150-180 (2007).   DOI
38 K. Fukumoto, and H. Ohno, Design and synthesis of hydrophobic and chiral anions from amino acids as precursor for functional ionic liquids, Chem. Commun., 29, 3081-3083 (2006).   DOI
39 N. Papaiconomou, J. Salminen, J. M. Lee, and J. M. Prausnitz, Physicochemical properties of hydrophobic ionic liquids containing 1-octylpyridinium, 1-octyl-2-methylpyridinium, or 1-octyl-4-methylpyridinium cations, J. Chem. Eng. Data, 52, 833-840 (2007).   DOI