• Title/Summary/Keyword: 물/시멘트비

Search Result 672, Processing Time 0.037 seconds

An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites (실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.158-170
    • /
    • 1994
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber rekforced silica fume . cement composites and light weight fly ash . cement composites are presented in this paper. 11s the test results show, the flexural strength, fracture toughness and ductility of CF reinforced silica fume . cement composites were remarkably increased by the increase of carbon fiber contents. And the workability of the fly ash . cement composites were improved, but the compressive and flexural strength and bulk specific gravity of them are decreased by increasing the ratio of fly ash to cement. And the compressive and flexural strength of the fly ash cement composites by cured under the hot water were improved than those by mositure cured. Also, the manufacturing process technology of lightweight fly ash . cement composites in replacement of general autoclaved lightweight concrete was developed and its optimum mix proportions were proposed.

Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap (물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도)

  • Kim, Jin-Ho;Lee, Yoon Jung;Jeong, Hoseong;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.199-208
    • /
    • 2021
  • The extrudability of 3D printed concrete and its member strength can be highly influenced by water cement ratio (W/C) and printing time gap (PTG). In this study, mold cast specimens and 3D printed specimens were fabricated with variables of W/C ratio and PTG, and their shear bond strength and interlayer surface moisture content were measured and analyzed. The test results showed that the shear bond strength is greatly influenced by the amount of interlayer surface moisture. It is thus recommended that proper amount of interlayer surface moisture with respect to PTG needs to be maintained to have a required interlayer shear bond strength. In addition, further research is required to estimate the effect of many environmental factors that can influence the interlayer surface moisture content.

콘크리트를 통한 핵종의 확산계수

  • 금동권;조원진;한필수
    • Nuclear Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.17-28
    • /
    • 1997
  • 콘크리트를 통한 핵종의 확산계수는 처분장으로 부터의 핵종 유출을 평가하는데 중요한입력 인자이다. 본 연구에서는 콘크리트에서의 핵종확산 연구 현황 및 핵종화산에 미치는 주요 인자들의 영향 등이 조사되었고, 주요 핵종의 확산계수가 직접 측정되었다. 내부확산법으로 측정된 확산계수값은 시료의 물과 시멘트 비 (W/C)가 증가할수록 증가하였으나 거의 같은 승수내에 있었으며, 공극확산이 핵종이동을 지배하였다. Cs 과 I 의 겉보기 확산계수는 순수 시멘트에서 각각 $1.0{\times}10^{-12}~1.0{\times}10^{-11}m^2/s$$3.0{\times}10^{-14}~1.0{\times}10^{-13}m^2/s$, 몰타르에서는 각각 $3.0{\times}10^{-12}~9.0{\times}10^{-11}m^2/s$$3.0{\times}10^{-11}m^2/s$의 범위에 있었다. 이와 병행하여 시멘트, 몰타르 및 콘크리트에서의 주요 방사성핵종의 확산계수 값을 문헌으로부터 수집, 정리하였다. 대상 핵종은 Cs, I, Sr, C, Co, H, Am, PU, Ni, Mn, Fe, Nb 및 Tc로서 수집된 핵종확산계수 값은 시료의 조건 (공극률 밀도, W/C 비, 온도 등) 에 따라 큰 편차를 보여주고 있다.

  • PDF

Freeze-thaw Resistance Estimation of Concrete using Surface Roughness and Image Analysis (콘크리트의 동결융해 저항성 추정을 위한 표면 거칠기 및 이미지 분석의 적용성)

  • Lee, Binna;Lee, Jong Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • As part of a research dedicated to the field evaluation of the durability of concrete subjected to freezing-thawing, this study analyzes the relationship between the surface roughness and the relative dynamic elastic modulus through image analysis. Four mix compositions with water-to-binder ratios (W/B) of 40%, 50%, 60% and 70% and without AE agent were considered to provoke early freezing. The basic physical properties of the mixes including the relative dynamic elastic modulus and the compressive strength were first evaluated experimentally according to W/B. Then, tests were performed to measure the surface roughness followed by photographs and SEM image analysis. The measured surface roughness tended to increase with larger number of freezing-thawing cycles regardless of W/B. The relative dynamic elastic modulus appeared to increase gradually with the number of cycles for the relatively denser mixes with W/B of 40% and 50%. Besides, the surface roughness increased only at rupture for the mixes with W/B of 60% and 70%. Moreover, the analysis of the photographs of the surface of the mixes with W/B of 40% and 50% revealed that the degradation progressed gradually from the surface with the freezing-thawing cycles. However, for the mixes with W/B of 60% and 70%, apparent change of the surface remained very insignificant until rupture at which damage like cracking could be observed. Consequently, the analysis of surface photograph or the measurement of the surface roughness presented some limitation in assessing the degree of freezing-thawing-induced degradation in case of relatively porous specimens. On the other hand, the photograph and surface roughness appeared to be sufficient for assessing such degradation for the mixes with W/B of 40% and 50%. Accordingly, the image of the surface and the surface roughness are potentially applicable on site for the assessment of freezing-thawing damages in relatively dense mixes.

Effect of Latex on Corrosion Resistance of Steel Rebar in Concrete (콘크리트 내에서 보강철근의 부식저항성에 미치는 라텍스의 효과)

  • Park, Sung-Ki;Won, Jong-Pil;Sung, Sang-Kyung;Park, Chan-Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.409-412
    • /
    • 2008
  • This study were evaluated the corrosion threshold reached at steel reinforcement in latex modified concrete(LMC). Accelerated testing was accomplished to the evalate the diffusion coefficient of LMC mix, and the time dependent constants of diffusion. Also, average chloride diffusion coefficient was estimated. From the average chloride ion diffusion coefficient, the time which critical chloride contents at depth of reinforcement steel was estimated. Test results indicated that the corrosion threshold reached at reinforcement in LMC are effected on the mix proportion factor including latex content, and water-cement ratio.

  • PDF

Flow and Compressive Strength Properties of Low-Cement Soil Concrete (저시멘트 소일콘크리트의 유동성 및 압축강도 특성)

  • Park, Jong-Beom;Yang, Keun-Hyeok;Hwang, Chul-Sung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • This study examined the effect of binder-to-soil ratio(B/S) and water-to-binder ratio(W/B) on the flow and compressive strength development of soil concrete using high-volume supplementary cementitious materials. As a partial replacement of ordinary portland cement, 10% by-pass dust, 40% ground granulated blast-furnace slag, and 25% circulating fluidized bed combustion fly ash were determined in the preliminary tests. Using the low-cement binder incorporated with clay soil or sandy soil, a total of 18 soil concrete mixtures was prepared. The flow of the soil concrete tended to increase with the increase in W/B and B/S, regardless of the type of soils. The compressive strength was commonly higher in sandy soil concrete than in clay soil concrete with the same mixture condition. Considering the high-workability and compressive strength development, it could be recommended for low-cement soil concrete to be mixed under the following condition: B/S of 0.35 and W/B of 175%.

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

Influence of Cement Matrix's Compressive Strength and Replacement of Expansive Admixture on the Mechanical Properties of Synthetic Polyethylene (PE) Fiber-Reinforced Strain-Hardening Cement-Based Composites (SHCCs) (압축강도와 팽창재 대체에 따른 폴리에틸렌 합성섬유로 보강된 변형 경화형 시멘트 복합체의 역학적 특성)

  • Song, Young Jae;Yun, Hyun Do;Min, Byung Sung;Rokugo, Keitetsu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2012
  • In order to improve the dimensional stability and mechanical performance of cement-based composites, the effect of an expansive admixture based on calcium sulphoaluminate (CSA) on the shrinkage and mechanical properties of strain-hardening cement-based composite (SHCC), which exhibits multiple cracks and pseudo strain-hardening behavior in the direct tension, is investigated. Polyethylene fibers reinforced SHCC mixtures with three levels (30, 70, and 100MPa) of compressive strength were compared through free shrinkage, compressive strength, flexural strength, and direct tensile strength measurements. The SHCC mixtures were cast with and without replacing 10% of Portland cement content with CSA admixture. According to test results, CSA admixture is effective in reducing shrinkage of SHCC material. SHCC mixture with CSA admixture exhibited a little higher strength than companion mixture without CSA admixture.

Analysis Technique for Chloride Penetration in High Performance Concrete Behavior Considering Time-Dependent Accelerated Chloride Diffusivity (촉진염화물 확산계수의 시간의존성을 고려한 고성능 콘크리트의 염화물 침투 해석기법)

  • Kwon, Seung-Jun;Park, Sun-Gyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.145-153
    • /
    • 2013
  • Recently, accelerated chloride diffusion coefficients are used for an evaluation of chloride behavior. Similar as apparent diffusion coefficients, accelerated diffusion coefficients decrease with time. In this study, decrease in diffusion coefficient with time is simulated with porosity. Utilizing DUCOM-program, porosities from 15 mix proportions are obtained and diffusion coefficients are modelled with regression analysis of porosity for 270 days. Considering non-linear binding capacity which means the relation between free and bound chloride ion, chloride behavior in high performance concrete is evaluated. Through utilizing the previous test results for concrete under chlorides for 180 days, the applicability of the proposed technique is verified. The proposed technique is evaluated to reasonably predict the chloride behavior in concrete with various w/c (water to cement) ratios and mineral admixtures (GGBFS and FA). It is also shown that decrease in chloride diffusion should be considered for chloride prediction in concrete with mineral admixture since it has very clear decrease in diffusivity with time.

Field Applicability Evaluation of SB Latex-Modified Concrete for Concrete Bridge Deck Overlay (콘크리트 교면 덧씌우기를 위한 SB 라텍스개질 콘크리트의 현장적용성 평가)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo;Kim, Ki-Hyun;Kim, Tae-Kyong
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.93-103
    • /
    • 2001
  • This study focused on the field applicability evaluation of SB latex-modified concrete (LMC) for concrete bridge deck overlay using mobile mixer. The main experimental factors were water-cement ratio(31, 33, 35 37%), latex contents(0, 5, 10, 15, 20%), and fine aggregate ratio(55, 56, 57, 58%) in order to evaluate the workability, mechanical properties, and durability property of LMC. The slump loss, air content, compressive and flexible strength tests were used to evaluate LMC workability and strength properties. Also, the rapid chloride permeability test was used to evaluate the relative permeability of LMC. As a results, the LMC with enough workability and good quality was produced when it was mixed in field using mobile mixer, satisfying the target compressive strength and flexural strength. The required water-cement ratio of LMC for same workability when mixing with mobile mixer was less than that when mixing in laboratory. Increasing the amount of latex produced concrete with increased flexural strength by mobile mixer. The required cement-water ratios for same initial $19{\pm}3cm$ slump were 37% and 33% at laboratory and mobile mixer, respectively. The mobile mixer was accurately calibrated satisfying the required specification.

  • PDF