• Title/Summary/Keyword: 문집

Search Result 448,868, Processing Time 0.34 seconds

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force (강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험)

  • Yoo, Sung-Won;Yang, In-Hwan;Suh, Jeong-In
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.513-521
    • /
    • 2009
  • Recently, the externally prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external unbonded tendon is different from that of normal bonded PSC beams in that the slip of tendons at deviators and the change of tendon eccentricity occurs as external loads are applied in external unbonded PSC beams. The purpose of the present paper is therefore to evaluate the flexural behavior by performing static flexural test according to tendon area and tendon force. From experimental results, before flexural cracking, there was no difference between external members and bonded members. However, after cracking, yielding load of reinforcement, ultimate load, and the tendon stress of external members was lower than that of bonded members. For the relationship of load-tendon stress, the increasing of tendon strain was inversely proportional to the initial tendon force. However, even if the initial tendon force was large, the tendon strain with small effective stress was smaller than that with large effective stress. The concrete compressive strain was proportional to the effective stress of external tendon. From the comparison between test results and codes, the ACI-318 could not consider the effect of tendon force or effective stress, and especially the results of ACI-318 were very small, so it was very conservative. And the AASHTO 1994 could be influenced on the tendon area, initial force and effective stress, but as it was made on the basis of internal unbonded tendon, its results were much larger than the test results. For this reason, the new correct predict equation of external tendon stress will be needed.

Microstructural Study of Mortar Bar on Akali-Silica Reaction by Means of SEM and EPMA Analysis (알칼리-실리카 반응에 의한 모르타르 봉의 SEM과 EPMA 분석을 통한 미세구조 연구)

  • Jun, Ssang-Sun;Lee, Hyo-Min;Jin, Chi-Sub
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • In this study alkali reactivity of crushed stone was conducted according to the ASTM C 227 that is traditional mortar bar test, and C 1260 that is accelerated mortar bar test method. The morphology and chemical composition of products formed in mortar bar, 3 years after the mortar bar tests had been performed, were examined using scanning electron microscopy (SEM) with secondary electron imaging (SEI) and electron probe microanalysis (EPMA) with backscattered electron imaging (BSEI). The crushed stone used in this study was not identified as being reactive by ASTM C 227. However, mortar bars exceeded the limit for deleterious expansion in accelerated mortar bar test used KOH solution. The result of SEM (SEI) analysis, after the ASTM C 227 mortar bar test, confirmed that there were no reactive products and evidence of reaction between aggregate particles and cement paste. However, mortar bars exposed to alkali solution (KOH) indicated that crystallized products having rosette morphology were observed in the interior wall of pores. EPMA results of mortar bar by ASTM C 227 indicated that white dots were observed on the surface of particles and these products were identified as Al-ASR gels. It can be considered that the mortar bar by ASTM C 227 started to appear sign of alkali-silica reaction in normal condition. EPMA results of the mortar bar by ASTM C 1260 showed the gel accumulated in the pores and diffused in to the cement matrix through cracks, and gel in the pores were found to be richer in calcium compared to gel in cracks within aggregate particles. In this experimental study, damages to mortar bars due to alkali-silica reaction (ASR) were observed. Due to the increasing needs of crushed stones, it is considered that specifications and guidelines to prevent ASR in new concrete should be developed.

Analysis on the Influence of Moment Distribution Shape on the Effective Moment of Inertia of Simply Supported Reinforced Concrete Beams (철근콘크리트 단순보의 유효 단면2차모멘트에 대한 모멘트 분포 형상의 영향 분석)

  • Park, Mi-Young;Kim, Sang-Sik;Lee, Seung-Bae;Kim, Chang-Hyuk;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2009
  • The concept of the effective moment of inertia has been generally used for the deflection estimation of reinforced concrete flexural members. The KCI design code adopted Branson's equation for simple calculation of deflection, in which a representative value of the effective moment of inertia is used for the whole length of a member. However, the code equation for the effective moment of inertia was formulated based on the results of beam tests subjected to uniformly distributed loads, which may not effectively account for those of members under different loading conditions. Therefore, this study aimed to verify the influences of moment shapes resulting from different loading patterns by experiments. Six beams were fabricated and tested in this study, where primary variables were concrete compressive strengths and loading distances from supports, and test results were compared to the code equation and other existing approaches. A method utilizing variational analysis for the deflection estimation has been also proposed, which accounts for the influences of moment shapes to the effective moment of inertia. The test results indicated that the effective moment of inertia was somewhat influenced by the moment shape, and that this influence of moment shape to the effective moment of inertia was not captured by the code equation. Compared to the code equation, the proposed method had smaller variation in the ratios of the test results to the estimated values of beam deflections. Therefore, the proposed method is considered to be a good approach to take into account the influence of moment shape for the estimation of beam deflection, however, the differences between test results and estimated deflections show that more researches are still required to improve its accuracy by modifying the shape function of deflection.

Study on the Evaluation CO2 Emission-Absorption of Concrete in the View of Carbonation (콘크리트의 탄산화 관점에서 CO2 배출량-흡수량 평가에 관한 연구)

  • Lee, Sang-Hyun;Lee, Sung-Bok;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.85-92
    • /
    • 2009
  • A concrete is considered unfriendly-environmental material because it uses cement which emits much $CO_2$ during producing process. However, a concrete absorbs $CO_2$ through carbonation process during service life. In this paper how much concrete absorbs $CO_2$ through carbonation was calculated using 1) concentration of carbonatable substances in concrete, 2) carbonated volume of concrete, 3) molecular weight of $CO_2$ based on references and the method was proposed. $CO_2$ emission from producing $1m^3$ concrete was calculated based on $CO_2$ emission datum of materials used in concrete. From using these methods that calculate $CO_2$ emission and absorption of concrete, assessment of $CO_2$ emission-absorption against a real apartment was conducted by subtracting absorption $CO_2$ according to service life from $CO_2$ emission in the process of making concrete. As a result, a ratio of absorption over emission of $CO_2$ through concrete carbonation according to service life 40, 60, 80 years was assessed about 3.65, 4.47, 5.18%. An objective of this study is to propose how to calculate emission - absorption of $CO_2$ from producing and using concrete. Although the result value, emission - absorption of $CO_2$, is 5.18% very low when the service life of an apartment is 80years, the value can be improved by reducing emission from using blended cement such as blast furnace slag or increasing replacement ratio of cement and increasing carbonated volume of concrete from expanding service life of a building. This study may be useful when $CO_2$ emission - absorption of concrete is evaluated in the further study.

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

A Study on Standardization of Supervision Cost by Investigating Supervision Workload in Cultural Heritage Repair Works (문화재수리공사의 감리업무량 조사를 통한 감리대가 기준 마련 연구)

  • Park, Hwan-Pyo;Han, Jae-Goo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.1
    • /
    • pp.32-42
    • /
    • 2013
  • The Korean Government introduced a cultural heritage supervision system in January 2010 to control quality and to prevent poor construction. However, cultural heritage related constructions that require supervision, a scope of supervision, supervision cost and placement of supervisors have not been standardized yet. For this reason, standards of supervision for repair works of cultural heritage that reflect the characteristics of small-scale repair works and restoration of cultural heritage are required. Accordingly, this study has suggested standards of supervision works and cost by analyzing the average construction period that is suitable for the characteristics of cultural heritage repair works. In other words, this study has suggested standards of full-time supervision costs by applying the fixed amount-added method (adding direct labor cost, direct expenses, overhead expenses, engineering fee, charges for additional works and VAT) which is the same as the method of calculating supervision costs for public construction projects because a supervisor has to work full time at a construction site to perform supervision if the project is a mid/large-scale cultural heritage repair work. Also, this study has suggested standards of part-time supervision costs for a small-scale cultural heritage repair work and the ways of supervising the construction projects by visiting the project site on important occasions. According to the result of the analysis by applying the forgoing standards of supervision costs for cultural heritage, a full-time supervision cost for cultural heritage repair works is approximately 98% compared to the construction supervision of a public construction project, and a part-time supervision is approximately 158% compared to architectural construction supervision. It is expected that the valuable cultural heritage of Korea will be preserved by controlling quality of cultural heritage repair works through the application of this study result - the standards of supervision costs for cultural heritage repair works - to an actual project.

Empirical Study for the Appraisal System of Execution Capacity using Correlation Analysis (상관관계분석을 이용한 시공능력평가 제도의 실증적 고찰)

  • Jeong, Keun Chae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.3-14
    • /
    • 2018
  • The system to appraise the execution capabilities of construction companies had been began as the Construction Contract Restriction System in 1958, was changed as the Construction Subcontract Restriction System in 1961, and finally has been operated as the Appraisal and Public Announcement of Execution Capacity (APAEC) from 1996. The APAEC system has been utilized as a firm and unique tool for assessing the execution capacities of construction companies despite many problems and continuous system changes. In spite of numerous studies to improve the APAEC system, however, efforts to analyze the system from the empirical point of view were insufficient. In this study, we analyze the status of APAEC system through analyzing correlations among assessment results of the APAEC, earned values of construction works, construction management performance indexes, and macroeconomic indexes for the past 10 years from 2007 to 2016. As a result of the analysis, it was found that Appraisal Value of Execution Capacity (AVEC) is excessively inflated in engineering and landscaping areas compared to Earned Value of Construction Work (EVCW) and the correlations between the AVECs and EVECs are not high in the areas of engineering, industrial equipment, and landscaping. In addition, technical appraisal values are excessively inflated in engineering and landscaping areas and correlations between AVEC and its components are high in the areas of engineering & building, industrial equipment, and large companies, but low in the areas of engineering, building, landscaping, and small and medium companies. Finally, the concentration of the AVEC is intensifying more and more and the concentration deteriorates construction management performance indexes and macroeconomic indexes. If we continuously improve the APAEC system based on the implications derived in this study, the APAEC system will be able to maintain it's position of a firm and unique means to access the execution capacities of construction companies.

A Framework on 3D Object-Based Construction Information Management System for Work Productivity Analysis for Reinforced Concrete Work (철근콘크리트 공사의 작업 생산성 분석을 위한 3차원 객체 활용 정보관리 시스템 구축방안)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.15-24
    • /
    • 2018
  • Despite the recognition of the need for productivity information and its importance, the feedback of productivity information is not well-established in the construction industry. Effective use of productivity information is required to improve the reliability of construction planning. However, in many cases, on-site productivity information is hardly management effectively, but rather it relies on the experience and/or intuition of project participants. Based on the literature review and expert interviews, the authors recognized that one of the possible solutions is to develop a systematic approach in dealing with productivity information of the construction job-sites. It is required that the new system should not be burdensome to users, purpose-oriented information management, easy-to follow information structure, real-time information feedback, and productivity-related factor recognition. Based on the preliminary investigations, this study proposed a framework for a novel system that facilitate the effective management of construction productivity information. This system has utilized Sketchup software which has good user accessibility by minimizing additional data input and related workload. The proposed system has been designed to input, process, and output the pertinent information through a four-stage process: preparation, input, processing, and output. The inputted construction information is classified into Task Breakdown Structure (TBS) and Material Breakdown Structure (MBS), which are constructed by referring to the contents of the standard specification of building construction, and converted into productivity information. In addition, the converted information is also graphically visualized on the screen, allowing the users to use the productivity information from the job-site. The productivity information management system proposed in this study has been pilot-tested in terms of practical applicability and information availability in the real construction project. Very positive results have been obtained from the usability and the applicability of the system and benefits are expected from the validity test of the system. If the proposed system is used in the planning stage in the construction, the productivity information and the continuous information is accumulated, the expected effectiveness of this study would be conceivably further enhanced.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF