Journal of the Korean Data and Information Science Society
/
v.8
no.2
/
pp.163-171
/
1997
Function approximation from a set of input-output pairs has numerous applications in scientific and engineering areas. Multilayer feedforward neural networks have been proposed as a good approximator of nonlinear function. The back propagation(BP) algorithm allows multilayer feedforward neural networks to learn input-output mappings from training samples. It iteratively adjusts the network parameters(weights) to minimize the sum of squared approximation errors using a gradient descent technique. However, the mapping acquired through the BP algorithm may be corrupt when errorneous training data we employed. When errorneous traning data are employed, the learned mapping can oscillate badly between data points. In this paper we propose a robust BP learning algorithm that is resistant to the errorneous data and is capable of rejecting gross errors during the approximation process, that is stable under small noise perturbation and robust against gross errors.
In this paper, we propose a text extraction method by pattern analysis on contour for effective text detection in image. Text extraction algorithms using edge based methods show good performance in images with simple backgrounds, The images of complex background has a poor performance shortcomings. The proposed method simplifies the color of the image by using K-means clustering in the preprocessing process to detect the character region in the image. Enhance the boundaries of the object through the High pass filter to improve the inaccuracy of the boundary of the object in the color simplification process. Then, by using the difference between the expansion and erosion of the morphology technique, the edges of the object is detected, and the character candidate region is discriminated by analyzing the pattern of the contour portion of the acquired region to remove the unnecessary region (picture, background). As a final result, we have shown that the characters included in the candidate character region are extracted by removing unnecessary regions.
This paper describes the development and implementation of a algorithm to decompose word images from image regions mixed text/graphics in document images using statistical analyses. To decompose word images from image regions, the character components need to be separated from graphic components. For this process, we propose a method to separate them with an analysis of box-plot using a statistics of structural components. An accuracy of this method is not sensitive to the changes of images because the criterion of separation is defined by the statistics of components. And then the character regions are determined by analyzing a local crowdedness of the separated character components. finally, we devide the character regions into text lines and word images using projection profile analysis, gap clustering, special symbol detection, etc. The proposed system could reduce the influence resulted from the changes of images because it uses the criterion based on the statistics of image regions. Also, we made an experiment with the proposed method in document image processing system for keyword spotting and showed the necessity of studying for the proposed method.
Kang Juyoung;Lee Bongjae;Song Jaeju;Shin Jinho;Yong Hwanseung
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.105-108
/
2004
데이터 양이 급증함에 따라 축적된 데이터로부터 의미있는 지식을 추출해 내고자 하는 데이터 마이닝에 대한 연구가 활발하게 진행되어 왔다. 특히 최근, 환경이 이동 분산화 되어감에 따라 감시${\cdot}$모니터링 시스템, 기상 관측 시스템, GPS 시스템과 같은 다양한 응용 시스템으로부터 방대한 양의 시공간 데이터가 발생하게 되었고, 이른 효율적으로 분석하고자 하는 시공간 데이터 마이닝 연구에 대한 관심이 더욱 높아지고 있다. 기존의 데이터 마이닝 기법의 경우 문자나 숫자 데이터를 대상으로 최적화 되어있기 때문에 시${\cdot}$공간 속성을 동시에 가지는 데이터를 분석하기에는 한계가 있는 것이 사실이다. 본 논문에서는 SOM(Self-Organizing Map)을 적용하여 시공간 클러스터링 모듈을 개발하고, 개발된 모듈의 성능 및 클러스터링 정확성을 다른 세 가지 군집분석 알고리즘과 비교, 분석하였다. 또한 가시화 모듈을 개발하여 입력 데이터의 특성과 결과를 더욱 정확하게 분석할 수 있도록 하였다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.47
no.5
/
pp.192-198
/
2010
With the popularization of the mobile phone with a built-in camera, there are a lot of effort to provide useful information to users by detecting and recognizing the text in the video which is captured by the camera in mobile phone, and there is a need to detect the text regions in such mobile phone video. In this paper, we propose a method to detect the text regions in the mobile phone video. We employ morphological operation as a preprocessing and obtain binarized image using modified k-means clustering. After that, candidate text regions are obtained by applying connected component analysis and general text characteristic analysis. In addition, we increase the precision of the text detection by examining the frequency of the candidate regions. Experimental results show that the proposed method detects the text regions in the mobile phone video with high precision and recall.
Park, Chang-Yong;Choi, Young-Eun;Moon, Ja-Yeon;Yun, Won-Tae
Journal of the Korean Geographical Society
/
v.44
no.1
/
pp.1-16
/
2009
This study aims to classify climate zones using Empirical Orthogonal Function and clustering analyses considering both air temperature and rainfall features in South Korea. When examining climatic characteristics of air temperature and rainfall by seasons, the distribution of air temperature is affected by topography and latitude for all seasons in South Korea. The distribution of rainfall demonstrated that the Yeongdong area, the southern coastal area and Jeju island have higher rainfall while the central area in Gyeongsangbuk-do is the least rainfall area. Clustering analyses of average linkage method and Ward's method was carried out using input variables derived from principal component scores calculated through Empirical Orthogonal Function analysis for air temperature and rainfall. Ward's method showed the best result of classification of climate zones. It was well reflected effects of topography, latitude, sea, the movement of surface pressure systems, and an administrative district.
Document image is segmented and classified into text, picture, or table by a document layout analysis, and the words in table regions are significant for keyword spotting because they are more meaningful than the words in other regions. This paper proposes a method to extract words from table regions in document images. As word extraction from table regions is practically regarded extracting words from cell regions composing the table, it is necessary to extract the cell correctly. In the cell extraction module, table frame is extracted first by analyzing connected components, and then the intersection points are extracted from the table frame. We modify the false intersections using the correlation between the neighboring intersections, and extract the cells using the information of intersections. Text regions in the individual cells are located by using the connected components information that was obtained during the cell extraction module, and they are segmented into text lines by using projection profiles. Finally we divide the segmented lines into words using gap clustering and special symbol detection. The experiment performed on In table images that are extracted from Korean documents, and shows $99.16\%$ accuracy of word extraction.
This paper proposes a method for line and word segmentation for machine-printed text blocks. To separate a text region into the unit of lines, it analyses the horizontal projection profile and performs a recursive projection profile cut method. In the word segmentation, between-word gaps are identified by a hierarchical clustering method after finding gaps in the text line by using a connected component analysis. In addition, a special symbol detection technique is applied to find two types of special symbols tying between words using their morphologic features. An experiment with 84 text regions from English and Korean documents shows that the proposed method achieves 99.92% accuracy of word segmentation, while a commercial OCR software named Armi 6.0 Pro$^{TM}$ has 97.58% accuracy.y.
Proceedings of the Korea Information Processing Society Conference
/
2018.05a
/
pp.271-274
/
2018
본 논문에서는 뉴스기사 데이터를 활용하여 대규모 뉴스기사를 소주제로 분류하는 군집 분석 방법을 제안한다. 또한, 분류된 뉴스기사를 사용자가 빠르게 이해하고 접할 수 있도록 핵심 문장을 추출하여 제공하는 방법을 제안한다. 분석 데이터는 포털 사이트 점유율 1위인 네이버의 경제 분야 뉴스기사를 크롤링하여 수집한다. 뉴스기사의 분석을 위해 전 처리를 통해 특수문자, 조사, 어미, 구두점 등의 불 용어 처리를 수행한다. 또한, k-means 알고리즘을 이용하여 대용량의 뉴스기사를 주제 별로 분류하는 것을 진행하며 그것을 토대로 핵심 문장을 추출한다. 추출된 핵심 문장은 분류된 뉴스기사의 주제를 나타내며 사용자에게 빠르게 정보를 전달하기 위해 활용한다. 본 논문의 연구 내용이 여러 언론사 사이트에 반영되면 사이트 품질과 사용자 만족도 향상에 기여할 수 있을 것으로 보인다.
Annual Conference on Human and Language Technology
/
2015.10a
/
pp.178-180
/
2015
본 논문에서는 기계 학습(Machine Learning)을 이용하여 댓글의 악성 여부를 분류하는 시스템에 대해 설명한다. 댓글은 문장의 길이가 짧고 맞춤법이 잘 되어있지 않는 특성을 가지고 있다. 따라서 댓글 분석을 위해 형태소 분석 결과와 문자단위 Bi-gram, Tri-gram을 자질로 이용한다. 전처리 된 댓글에서 각 자질 추출 방법에 따라 자질을 추출한다. 추출된 자질을 이용하여 기계학습 알고리즘의 모델을 학습하고 댓글의 악성 여부 분류에 활용한다. 본 논문에서는 댓글의 악성 여부 판별을 위한 자질 추출방법을 제안하고 실험을 통해 이에 대한 효용성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.