• 제목/요약/키워드: 문자영역추출

검색결과 288건 처리시간 0.021초

차량 규격과 특징 패턴을 이용한 자동차번호판 추출 (Extracting Of Car License Plate Using Motor Vehicle Regulation And Character Pattern Recognition)

  • 이종석;남기환;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2001년도 추계종합학술대회
    • /
    • pp.596-599
    • /
    • 2001
  • 자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.

  • PDF

디지털 비디오에서 문자 영역 이진화를 위한 색상 극화 기법 (The Color Polarity Method for Binarization of Text Region in Digital Video)

  • 정종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권9호
    • /
    • pp.21-28
    • /
    • 2009
  • 색상 극화란 주어진 텍스트 영역에서 글자색이 무엇인지를 결정하는 과정으로서 텍스트 추출을 위해서 선행되야 하는 작업이다. 본 논문에서는 텍스트 영역이 주어졌을 때 글자 영역을 추출하기 위한 색상 극화 기법을 제안한다. 제안된 방법은 글자 영역과 배경 영역에 대한 관찰을 바탕으로 두 영역 사이의 면적 비율과 표준편차비율의 관계를 색상 극화에 이용한다. 이를 위하여 그레이 스케일로 주어진 텍스트 영역을 Otsu의 방법으로 이진화하고 이진화된 두 영역을 각각 4-CC 레이블링한다. 레이블링된 두 그룹의 영역에 대해 각각 면적과 영역 중심으로부터의 거리에 대한 표준편차를 계산한 다음 두 그룹에서 면적이 가장 넓은 영역을 갖는 영역 사이의 면적 비와 표준편차가 가장 작은 영역들 사이의 표준편차 비를 이용하여 색상 극화를 수행한다. 다양한 폰트와 크기를 갖는 텍스트 영역에 대한 실험을 통해 제안된 방법이 강건하게 색상 극화를 수행함을 확인하였다.

가상 데이터를 활용한 번호판 문자 인식 및 차종 인식 시스템 제안 (Proposal for License Plate Recognition Using Synthetic Data and Vehicle Type Recognition System)

  • 이승주;박구만
    • 방송공학회논문지
    • /
    • 제25권5호
    • /
    • pp.776-788
    • /
    • 2020
  • 본 논문에서는 딥러닝을 이용한 차종 인식과 자동차 번호판 문자 인식 시스템을 제안한다. 기존 시스템에서는 영상처리를 통한 번호판 영역 추출과 DNN을 이용한 문자 인식 방법을 사용하였다. 이러한 시스템은 환경이 변화되면 인식률이 하락되는 문제가 있다. 따라서, 제안하는 시스템은 실시간 검출과 환경 변화에 따른 정확도 하락에 초점을 맞춰 1-stage 객체 검출 방법인 YOLO v3를 사용하였으며, RGB 카메라 한 대로 실시간 차종 및 번호판 문자 인식이 가능하다. 학습데이터는 차종 인식과 자동차 번호판 영역 검출의 경우 실제 데이터를 사용하며, 자동차 번호판 문자 인식의 경우 가상 데이터만을 사용하였다. 각 모듈별 정확도는 차종 검출은 96.39%, 번호판 검출은 99.94%, 번호판 검출은 79.06%를 기록하였다. 이외에도 YOLO v3의 경량화 네트워크인 YOLO v3 tiny를 이용하여 정확도를 측정하였다.

PCA와 LDA을 이용한 차량 번호판 통합 인식에 관한 연구 (A Study on Recognition of Both of PCA and LAD Using Types of Vehicle Plate)

  • 이진기;김현열;이승규;이건화;박영록;안기남;배철수;박영철
    • 한국정보전자통신기술학회논문지
    • /
    • 제6권1호
    • /
    • pp.6-17
    • /
    • 2013
  • 최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.

웹 환경 학사관리 시스템의 학생증 인식을 위한 개선된 ART1 알고리즘 (Enhanced ART1 Algorithm for the Recognition of Student Identification Cards of the Educational Matters Administration System on the Web)

  • 박현정;김광백
    • 한국컴퓨터정보학회논문지
    • /
    • 제10권5호
    • /
    • pp.333-342
    • /
    • 2005
  • 본 논문에서는 영상처리 및 인식 기술을 학생증 영상 인식에 적용하는 방법과 웹 환경에서 학생 정보를 관리할 수 있는 방법을 제안한다. 원 학생증 영상에서 가장 밝은 픽셀과 가장 어두운 픽셀에 대한 평균 밝기 값을 임계치로 설정하여 원 영상을 이진화하여 수평 방향으로 히스토그램을 수행하고 학번의 위치 정보를 이용하여 학번 영역을 추출한다. 추출된 학번 영역의 잡음을 제거하기 위하여 3$\times$3 마스크를 적용한 최빈수 평활화(smoothing)를 수행하여 잡음을 제거하고 수직 방향 히스토그램을 이용하여 개별 문자를 추출한다. 추출된 학번 문자의 인식은 ARTI 알고리즘을 개선하여 적용한다. 본 논문에서 제안하고 있는 개선된 ART1 알고리즘은 클러스터링하는데 있어서 임의의 패턴과 저장 패턴 사이의 불일치 허용도를 나타내는 경계 변수를 동적으로 설정함으로써 기존의 ART1 알고리즘을 개선한다. 인식 실험 결과, 개선된 ART1 알고리즘이 기존의 ART1 알고리즘보다 인식률이 개선되었다. 따라서 실험을 통해 인식 향상을 보인 제안된 학생증 인식 방법을 이용하여 웹 환경에서의 학사 관리 시스템을 개발하였다.

  • PDF

Water flow model에 기반한 문서영상 이진화 방법의 속도 개선 (Speed-up of Document Image Binarization Method Based on Water Flow Model)

  • 오현화;김도훈;이재용;김두식;임길택;진성일
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.75-86
    • /
    • 2004
  • 본 논문에서는 water flow model의 개념을 적용한 문서영상 이진화 방법의 속도를 개선하는 방법을 제안한다. 제안한 방법은 문서영상에서 문자 주위를 관심영역(region of interest: ROI)으로 추출하고 3차원 영상지형에서 물이 뿌려지는 영역을 관심영역 이내로 제한한다. 국부 계곡에 누적되는 물의 양은 계곡의 깊이와 경사를 이용하여 자동으로 결정된다. 그리고 계곡의 최저 지점뿐만 아니라 그 주위에도 가중치를 부여하여 물을 누적함으로써 관심영역에 해당하는 영상지형에 물을 붓는 과정을 한번만 수행하여 충분한 양의 물이 계곡에 채워지도록 한다. 계곡에 형성된 연못의 깊이는 배경과 문자의 밝기 차에 따라 다양하므로 연못의 깊이를 기준으로 문자 분리를 위한 임계치를 적응적으로 결정한다. 실제 문서영상에 대한 실험에서 제안한 방법의 수행속도가 water flow model에 기반 한 이진화 방법과 비교하여 월등히 향상되었으며 이진화 품질도 매우 우수함을 보였다.

수동 AVI 기술을 이용한 다중목표물의 인식 (Recognition of Multi-Target Objects Using Passive AVI Techniques)

  • 조동욱;김주원
    • 한국정보처리학회논문지
    • /
    • 제6권7호
    • /
    • pp.1970-1979
    • /
    • 1999
  • 본 논문에서는 수동 AVI 기술을 이용하여 차량 번호 판과 운전자 얼굴을 동시에 인식하는 시스템에 대해 제안하고자 한다. 이를 위해 우선적으로 환경에 불편인 전처리과정 알고리즘의 제시와 목표영역이 되는 차량 번호판 영역과 운전자 얼굴 영역을 추출하는 방법에 대해 다루고자 한다. 이후 목표영역에서 문자 영역분리와 인식 파라미터 추출을 행하고 차량 번호판의 경우 원형 정합으로, 운전자 얼굴 영역의 경우 퍼지 관계 행렬을 생성하여 최종적인 인식을 수행하고자 한다. 본 논문에서 제안하는 시스템은 환경에 불변인 전처리과정의 수행과 기존의 AVI 시스템에서 차량 번호 판만을 인식했던 것을 운전자 얼굴 인식까지 행함으로써 기존 AVI 시스템의 적용성 확대를 기할 수 있었다.

  • PDF

시·공간 정보를 이용한 동영상의 인공 캡션 검출 (Detection of Artificial Caption using Temporal and Spatial Information in Video)

  • 주성일;원선희;최형일
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제1권2호
    • /
    • pp.115-126
    • /
    • 2012
  • 동영상에 포함되는 인공 캡션은 영상과 관계있는 의미정보를 포함한다. 이러한 영상을 표현하는 정보를 이용하기 위해 캡션을 추출하는 연구는 근래에 들어 활발히 진행되고 있다. 기존 방법들은 대부분 정지영상에서 캡션을 검출하였다. 하지만 동영상의 경우에는 유용한 시간정보가 있다. 따라서 본 연구는 이러한 시간정보를 사용한 캡션영역 검출방법을 제안한다. 먼저, 캡션후보영역 검출을 위해 문자출현맵을 생성하고, 후보영역 매칭 과정에서 지속후보영역을 검출한다. 검출된 지속후보영역의 소멸성 검사를 통해 캡션의 소멸 여부를 검출하고 소멸된 캡션 일 경우 시 공간정보에 의한 병합과정을 통해 캡션후보영역을 결정한다. 마지막으로 결정된 캡션후보영역을 검증하기 위하여 에지 방향 히스토그램을 이용한 신경망 인식기를 통하여 최종캡션영역을 검출한다. 실험을 위해 다양한 크기와 형태, 위치의 캡션을 포함하는 동영상에 대해 영역검출의 성능을 평가하고자 Recall과 Precision을 이용하여 제안하는 방법의 영역검출에 대한 효율성을 입증한다.

문자와 식, 함수 영역에서 보이는 중학생의 수학적 오류 분석: 2013년 국가수준 학업성취도 평가 서답형 문항을 바탕으로 (Analysis of Errors by Response Assessments of Korean Middle School Students on the 2013 National Assessment of Educational Achievement in Mathematics)

  • 조윤동;고호경
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제25권3호
    • /
    • pp.281-302
    • /
    • 2015
  • 본 연구에서는 국가수준 학업성취도 서답형 문항의 문제해결 과정에서 나타나는 오류를 살펴보기 위하여 236개 학교 8007명의 답안지를 추출하여 분석하였다. 분석에 사용한 문항은 국가수준 학업성취도 평가 중학교 수학 서답형 문항으로 내용 영역은 '문자와 식', '함수'이고 행동 영역은 '문제해결'과 '계산'이다. 두 문항 모두 주어진 문제 상황에 알맞은 식을 세우고 조건에 맞는 결과를 산출하는 문제이다. 분석 결과 각 문항에 따라 문제 상황을 파악하여 식을 세우고, 풀며, 결과를 기술하는 세가지 과정에서 다양한 오류들이 나타났다. 본 연구에서는 이에 대한 원인을 추론하여 교수학적 시사점을 이끌어 내고자 하였다.

컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발 (Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm)

  • 김광백;윤홍원;노영욱
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.87-101
    • /
    • 2002
  • 본 논문에서는 컬러 정보와 퍼지 c-means 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리시스템 개발에 대해서 기술한다 컬러 정보와 퍼지 c-means알고리즘을 이용한 차량 번호판 인식 기술은 차량의 영상에서 번호판을 추출하는 부분과 추출한 번호판 영역에서 문자를 인식하는 부분으로 구성된다 본 논문에서는 최빈수 평활화를 이용하여 차량 영상에서 녹색 잡음을 제거하고 RGB컬러에서 녹색 정보와 횐색 정보를 이용하여 번호판 영역을 추출하였다. 추출된 번호판 영역의 코드들은 히스토그램 방법을 이용하여 추출하였고 FCM(Fuzzy c-means) 알고리즘을 이용하여 차량 번호판을 인식하였다. 80개의 실제 차량 영상을 대상으로 실험한 결과는 제안된 번호판 영역 추출 방법이 기존의 RGB정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다 그리고 FCM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 방법을 이용하여 주차관리시스템을 개발하였다.

  • PDF