Park, Young-Kyu;Kim, Jin-Su;Kim, Tae-Yong;Lee, Jung-Hyun
Proceedings of the Korea Information Processing Society Conference
/
2000.10a
/
pp.305-308
/
2000
웹사이트 설계자의 주관적 판단에 의한 정적 하이퍼텍스트 링킹은 모든 사용자들에게 동일한 링크를 제공한다는 단점을 가지고 있다. 이러한 문제점을 개선하고, 각 사용자들의 브라우징 패턴에 적합한 웹 문서들을 동적 링크로 제공해주기 위한 여러 동적 링킹 시스템들이 제안되었다. 그러나 대부분의 동적 링킹 시스템들은 사용자의 현재 브라우징 패턴과 가장 유사한 패턴 정보만을 이용해 동적 링크를 제공하기 때문에 연관성이 없는 웹 문서들에 대한 링크를 수시로 제공한다는 또 다른 문제를 지니고 있다. 본 논문에서는 데이터 마이닝의 한 응용 분야인 웹 마이닝 기법을 이용하여 웹 서버의 로그파일로부터 사용자들의 브라우징 패턴을 분석해내고, 다차원 데이터 집합에 적합한 Association Rule Hypergraph Partitioning(ARHP) 알고리즘을 이용하여 서로 연관성이 있는 웹 문서들을 분류한다. 사용자 브라우징 패턴 정보로부터 사용자에게 추천해줄 1차 링크 집합을 생성하고, 연관 웹 문서 정보를 이용하여 2차 링크 집합을 생성한다. 그리고 두 링크 집합에 공통으로 포함된 링크 집합만을 사용자에게 동적으로 추천해줌으로써 사용자가 보다 편리하고 정확하게 웹사이트를 브라우징 할 수 있도록 하는 동적 링킹 시스템을 제안한다.
Research and development(R&D) activities consist of analytical survey and state-of-the-art report writing for technical information. As R & D activities become more concrete, it often happens that they refer to related technical documents that were created in previous steps or created in previous similar projects. This paper proposes a research-task based reuse recommendation framework(RTRF), which is a reuse recommendation system that enables researchers to efficiently reuse the existing artifacts. In addition to the existing keyword-based retrieval and reuse, the proposed framework also provides reusable information that researchers may need by recommending reusable artifacts based on task similarity; other developers who have a similar task to the researcher's work can recommend reusable documents. A case study was performed to show the researchers' efficiency in the process of writing the technology trend report by reusing existing documents. When reuse is performed using RTRF, it can be seen that documents of different stages or other research fields are reused more frequently than when RTRF is not used. The RTRF may contribute to the efficient reuse of the desired artifacts among huge amount of R&D documents stored in the repository.
Proceedings of the Korea Society for Simulation Conference
/
2005.11a
/
pp.56-62
/
2005
추천자 시스템은 E-commerce 사이트에서 소비자가 관심을 가지는 상품에 대한 정보를 수집하여 소비자가 구매할 것으로 예상되는 상품을 추천하는 목적으로 개발되었다. 추천자 시스템을 구축하여 성공적으로 활용하기 위해서 해결해야 할 과제로 취급 상품이 대량인 경우에 알고리즘의 효율성 문제라고 볼 수 있는데 본 연구는 문서 검색에서 사용되는 LSI(latent semantic indexing) 분석법을 이용하여 추천자 시스템을 개선하는 방안을 연구하고자 한다. LSI 분석법을 이용하여 고객-상품 구매행렬에서 고객이 상품을 구매하는 경향을 효과적으로 파악할 수 있다면 목표고객에 대한 인접고객군을 생성하는 계산 노력은 현저히 감소되어 추천자 알고리즘이 실시간으로 고객 데이터베이스로부터 많은 인접 고객을 효율적으로 검색할 수 있을 것으로 기대된다. 본 연구는 E-commerce 사이트로부터 얻는 실제적인 고객 자료와 유사한 자료를 시뮬레이션을 통하여 재생하고 이를 바탕으로 LSI에 의한 추천자 시스템의 효율성을 분석하고자 한다.
본 연구에서는 웹 서비스의 종류가 급격히 증가하게 됨에 따라 유사 패턴의 사용자들을 위해 웹 링크 서비스를 일부 추천해주는 시스템에 대해 설계 및 구현하였다. 본 연구를 통해 유사 패턴의 웹 서비스 이용자들의 그룹을 정의 하는데 네이브 베이지안 알고리즘을 적응하고 그에 따른 새로운 사용자에 대한 그룹정의도 함께 한다. 유사 패턴의 그룹의 사용자들에게 적합한 링크들을 추천해준다. 기존의 추천 시스템에서 제공하는 추천 아이템을 제정의 하는 것이 아니라 기존의 웹 서비스 페이지에서 유사 패턴의 그룹에게만 일부의 링크들만 활성화 하여 제공한다. 이는 웹 서비스의 일부 링크 서비스들만을 활성화 하여 추천 해줌으로써 웹 서비스의 모바일 디바이스등에 제공시 웹 페이지의 소스를 경감하여 좀 더 수월하게 서비스 할 수 있다. 또한 사용자들도 추천 받은 링크만을 접근하게 됨에 따라 접근하지 않는 다른 서비스에 대한 링크 소스가 빠진 웹 페이지만 제공 받을 수 있다.
Seo, Jaehyung;Oh, Dongsuk;Eo, Sugyeong;Park, Sungjin;Lim, Heuiseok
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.495-500
/
2020
뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.
Ontology is the artifacts for representing the truth or the states of objects by defining objects and their relations. In this paper, we propose an agent that classifies Web documents and provides personalized information towards user`s information needs using ontology. the agent uses ontology in which semantic relations on Web documents are represented in ta hierarchical form to classify Web documents. In this paper, ontology consists of concepts, features(describing concepts), relations(among concepts) and constraints(among elements in a feature). The agent can capture user's information needs efficiently by using ontology and assist Web navigation by using users profiles and the results of identification of semantic relations in Web documents. Also, the agent obtains Web documents by a look-ahead search and represents them as concepts, therefore users can understand them easily by receiving recommendations expressed in the form of high-level concepts.
Proceedings of the Korean Operations and Management Science Society Conference
/
2003.05a
/
pp.843-848
/
2003
의사결정에 관련된 지식을 선별하고 이를 효과적으로 활용하기 위하여 많은 기업들이 지식관리시스템을 도입하여 활용하고 있다. 방대한 지식에서 사용자에게 적합한 지식을 제공하는 지식추천 기능은 지식관리시스템의 주요한 기능 중의 하나이다. 대부분의 시스템들이 사용자에게 직접 관심분야를 입력받고 이 정보를 바탕으로 지식추천을 하고 있으나, 사용자가 과거 지식관리시스템을 활용하면서 보인 관심표명 행동들을 활용한 지능적인 지식 주전 방안에 대한 연구는 미진한 편이다. 본 연구에서는 지식 카테고리 또는 문서 키워드를 활용하여 지식을 추천하는 방안과 사용자의 관심분야를 표현하는 프로파일 생성을 위한 다양한 방안을 설계하고 각 방안들의 지식추천 성과를 비교하였다.
Although there were some technological developments in improving the collaborative filtering, they have yet to fully reflect the actual relation of the items. In this paper, we propose the recommendation system using associative web document classification by word frequency and ${\alpha}$-cut to address the short comings of the collaborative filtering. The proposed method extracts words from web documents through the morpheme analysis and accumulates the weight of term frequency. It makes associative rules and applies the weight of term frequency to its confidence by using Apriori algorithm. And it calculates the similarity among the words using the hypergraph partition. Lastly, it classifies related web document by using ${\alpha}$-cut and calculates similarity by using adjusted cosine similarity. The results show that the proposed method significantly outperforms the existing methods.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.04a
/
pp.181-184
/
2005
무수히 많은 정보 중에서 특정 사용자에게 가장 유용할 것으로 판단되는 정보를 추천하여 제공함으로써 특정 사용자의 편의를 돕는 시스템이 추천시스템이다. 이러한 추천시스템에 성공적으로 적용된 알고리즘이 협력적 필터링이며 이것은 다른 사용자로부터 먼저 평가된 웹 문서를 제공받아 이를 축적하고 다시 사용자에게 환원하는 알고리즘이다. 하지만 이 알고리즘은 초기평가, 희소성, 확장성 둥의 문제점을 내포하고 있다. 따라서 본 논문은 이러한 문제점을 해결하고 성능 향상을 하기 위해 적용된 개인화 추천시스템 관련 최신 알고리즘들을 비교하고 분석한 결과를 제시한다. 이를 위해 먼저 최근에 발표된 협력적 필터링과 최근접 이웃 알고리즘, 인공 지능기술을 이용한 알고리즘, 군집화 알고리즘 둥 각각에 대한 기술적 분석 결과를 수행한다. 그런 후 이들 다양한 알고리즘들의 조합을 통한 성능 향상 결과에 대한 비교분석과 각각의 조합에 대한 장단점 분석 결과도 또한 제시한다.
Annual Conference on Human and Language Technology
/
2011.10a
/
pp.41-46
/
2011
스마트폰의 대중화와 함께 그에 내장된 GPS를 활용하여 컨텐츠를 제공하는 서비스들이 점차 늘어나고 있다. 그러나 이런 컨텐츠를 단지 위도, 경도 좌표 정보만을 기초로 구성하게 되면 실제 그 위치가 가지는 의미적 특성을 제대로 반영하지 못하게 된다. 사용자의 위치를 기반으로 그에 맞는 서비스를 제공하기 위해서는 장소의 토픽을 고려해야한다. 본 논문은 장소에 내재된 토픽을 바탕으로 한 기사 추천 방법을 제안한다. 장소와 관련된 문서로부터 장소의 토픽을 표현하고 그 토픽을 기사 추천에 이용한다. 제안한 방법이 실제로 장소에 내재된 토픽을 잘 반영함을 보이고 또한 이를 바탕으로 장소와 관련된 적합한 기사를 추천하는 것을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.