• Title/Summary/Keyword: 문서 추천

Search Result 123, Processing Time 0.032 seconds

Dynamic Linking System Using Related Web Documents Classification and Users' Browsing Patterns (연관 웹 문서 분류와 사용자 브라우징 패턴을 이용한 동적 링킹 시스템)

  • Park, Young-Kyu;Kim, Jin-Su;Kim, Tae-Yong;Lee, Jung-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.305-308
    • /
    • 2000
  • 웹사이트 설계자의 주관적 판단에 의한 정적 하이퍼텍스트 링킹은 모든 사용자들에게 동일한 링크를 제공한다는 단점을 가지고 있다. 이러한 문제점을 개선하고, 각 사용자들의 브라우징 패턴에 적합한 웹 문서들을 동적 링크로 제공해주기 위한 여러 동적 링킹 시스템들이 제안되었다. 그러나 대부분의 동적 링킹 시스템들은 사용자의 현재 브라우징 패턴과 가장 유사한 패턴 정보만을 이용해 동적 링크를 제공하기 때문에 연관성이 없는 웹 문서들에 대한 링크를 수시로 제공한다는 또 다른 문제를 지니고 있다. 본 논문에서는 데이터 마이닝의 한 응용 분야인 웹 마이닝 기법을 이용하여 웹 서버의 로그파일로부터 사용자들의 브라우징 패턴을 분석해내고, 다차원 데이터 집합에 적합한 Association Rule Hypergraph Partitioning(ARHP) 알고리즘을 이용하여 서로 연관성이 있는 웹 문서들을 분류한다. 사용자 브라우징 패턴 정보로부터 사용자에게 추천해줄 1차 링크 집합을 생성하고, 연관 웹 문서 정보를 이용하여 2차 링크 집합을 생성한다. 그리고 두 링크 집합에 공통으로 포함된 링크 집합만을 사용자에게 동적으로 추천해줌으로써 사용자가 보다 편리하고 정확하게 웹사이트를 브라우징 할 수 있도록 하는 동적 링킹 시스템을 제안한다.

  • PDF

A reuse recommendation framework of artifacts based on task similarity to improve R&D performance (연구개발 생산성 향상을 위한 태스크 유사도 기반 산출물 재사용 추천 프레임워크)

  • Nam, Seungwoo;Daneth, Horn;Hong, Jang-Eui
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.23-33
    • /
    • 2019
  • Research and development(R&D) activities consist of analytical survey and state-of-the-art report writing for technical information. As R & D activities become more concrete, it often happens that they refer to related technical documents that were created in previous steps or created in previous similar projects. This paper proposes a research-task based reuse recommendation framework(RTRF), which is a reuse recommendation system that enables researchers to efficiently reuse the existing artifacts. In addition to the existing keyword-based retrieval and reuse, the proposed framework also provides reusable information that researchers may need by recommending reusable artifacts based on task similarity; other developers who have a similar task to the researcher's work can recommend reusable documents. A case study was performed to show the researchers' efficiency in the process of writing the technology trend report by reusing existing documents. When reuse is performed using RTRF, it can be seen that documents of different stages or other research fields are reused more frequently than when RTRF is not used. The RTRF may contribute to the efficient reuse of the desired artifacts among huge amount of R&D documents stored in the repository.

Simulation Study on E-commerce Recommendation System (전자상거래 추천자 시스템에 대한 분석)

  • Kwon Chi-myung
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.56-62
    • /
    • 2005
  • 추천자 시스템은 E-commerce 사이트에서 소비자가 관심을 가지는 상품에 대한 정보를 수집하여 소비자가 구매할 것으로 예상되는 상품을 추천하는 목적으로 개발되었다. 추천자 시스템을 구축하여 성공적으로 활용하기 위해서 해결해야 할 과제로 취급 상품이 대량인 경우에 알고리즘의 효율성 문제라고 볼 수 있는데 본 연구는 문서 검색에서 사용되는 LSI(latent semantic indexing) 분석법을 이용하여 추천자 시스템을 개선하는 방안을 연구하고자 한다. LSI 분석법을 이용하여 고객-상품 구매행렬에서 고객이 상품을 구매하는 경향을 효과적으로 파악할 수 있다면 목표고객에 대한 인접고객군을 생성하는 계산 노력은 현저히 감소되어 추천자 알고리즘이 실시간으로 고객 데이터베이스로부터 많은 인접 고객을 효율적으로 검색할 수 있을 것으로 기대된다. 본 연구는 E-commerce 사이트로부터 얻는 실제적인 고객 자료와 유사한 자료를 시뮬레이션을 통하여 재생하고 이를 바탕으로 LSI에 의한 추천자 시스템의 효율성을 분석하고자 한다.

  • PDF

Web Link Group Recommend System Design using Page classification Algorithm (문서분류 알고리즘을 이용한 웹 링크 그룹 추천 시스템 연구)

  • Mun, Yil-Hyeong;Seo, Dae-Hee;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.417-418
    • /
    • 2008
  • 본 연구에서는 웹 서비스의 종류가 급격히 증가하게 됨에 따라 유사 패턴의 사용자들을 위해 웹 링크 서비스를 일부 추천해주는 시스템에 대해 설계 및 구현하였다. 본 연구를 통해 유사 패턴의 웹 서비스 이용자들의 그룹을 정의 하는데 네이브 베이지안 알고리즘을 적응하고 그에 따른 새로운 사용자에 대한 그룹정의도 함께 한다. 유사 패턴의 그룹의 사용자들에게 적합한 링크들을 추천해준다. 기존의 추천 시스템에서 제공하는 추천 아이템을 제정의 하는 것이 아니라 기존의 웹 서비스 페이지에서 유사 패턴의 그룹에게만 일부의 링크들만 활성화 하여 제공한다. 이는 웹 서비스의 일부 링크 서비스들만을 활성화 하여 추천 해줌으로써 웹 서비스의 모바일 디바이스등에 제공시 웹 페이지의 소스를 경감하여 좀 더 수월하게 서비스 할 수 있다. 또한 사용자들도 추천 받은 링크만을 접근하게 됨에 따라 접근하지 않는 다른 서비스에 대한 링크 소스가 빠진 웹 페이지만 제공 받을 수 있다.

  • PDF

Semi-supervised GPT2 for News Article Recommendation with Curriculum Learning (준 지도 학습과 커리큘럼 학습을 이용한 유사 기사 추천 모델)

  • Seo, Jaehyung;Oh, Dongsuk;Eo, Sugyeong;Park, Sungjin;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.495-500
    • /
    • 2020
  • 뉴스 기사는 반드시 객관적이고 넓은 시각으로 정보를 전달하지 않는다. 따라서 뉴스 기사를 기존의 추천 시스템과 같이 개인의 관심사나 사적 정보를 바탕으로 선별적으로 추천하는 것은 바람직하지 않다. 본 논문에서는 최대한 객관적으로 다양한 시각에서 비슷한 사건과 인물에 대해서 판단할 수 있도록 유사도 기반의 기사 추천 모델을 제시한다. 길이가 긴 문서 사이의 유사도를 측정하기 위해 GPT2 [1]언어 모델을 활용했다. 이 과정에서 단방향 디코더 모델인 GPT2 [1]의 단점을 추가 학습으로 개선했으며, 저장 공간의 효율과 핵심 문단 추출을 위해 BM25 [2]함수를 사용했다. 그리고 준 지도 학습 [3]을 통해 유사도 레이블링이 되어있지 않은 최신 뉴스 기사에 대해서도 자가 학습을 진행했으며, 이와 함께 길이가 긴 문단에 대해서도 효과적으로 학습할 수 있도록 문장 길이를 기준으로 3개의 단계로 나누어진 커리큘럼 학습 [4]방식을 적용했다.

  • PDF

An Ontology-based Recommendation Agent for Personalized Web Navigation (개인화 된 웹 네비게이션을 위한 온톨로지 기반 추천 에이전트)

  • 정현섭;양재영;최중민
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.1_2
    • /
    • pp.40-50
    • /
    • 2003
  • Ontology is the artifacts for representing the truth or the states of objects by defining objects and their relations. In this paper, we propose an agent that classifies Web documents and provides personalized information towards user`s information needs using ontology. the agent uses ontology in which semantic relations on Web documents are represented in ta hierarchical form to classify Web documents. In this paper, ontology consists of concepts, features(describing concepts), relations(among concepts) and constraints(among elements in a feature). The agent can capture user's information needs efficiently by using ontology and assist Web navigation by using users profiles and the results of identification of semantic relations in Web documents. Also, the agent obtains Web documents by a look-ahead search and represents them as concepts, therefore users can understand them easily by receiving recommendations expressed in the form of high-level concepts.

A Comparative Analysis of Knowledge Recommendation Model for Enterprise Knowledge Portal (기업지식포탈을 위한 지능형 지식추천 모델 비교)

  • 임남구;김광래;이홍주;변현진;김종우;박성주
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.843-848
    • /
    • 2003
  • 의사결정에 관련된 지식을 선별하고 이를 효과적으로 활용하기 위하여 많은 기업들이 지식관리시스템을 도입하여 활용하고 있다. 방대한 지식에서 사용자에게 적합한 지식을 제공하는 지식추천 기능은 지식관리시스템의 주요한 기능 중의 하나이다. 대부분의 시스템들이 사용자에게 직접 관심분야를 입력받고 이 정보를 바탕으로 지식추천을 하고 있으나, 사용자가 과거 지식관리시스템을 활용하면서 보인 관심표명 행동들을 활용한 지능적인 지식 주전 방안에 대한 연구는 미진한 편이다. 본 연구에서는 지식 카테고리 또는 문서 키워드를 활용하여 지식을 추천하는 방안과 사용자의 관심분야를 표현하는 프로파일 생성을 위한 다양한 방안을 설계하고 각 방안들의 지식추천 성과를 비교하였다.

  • PDF

Recommendation System using Associative Web Document Classification by Word Frequency and α-Cut (단어 빈도와 α-cut에 의한 연관 웹문서 분류를 이용한 추천 시스템)

  • Jung, Kyung-Yong;Ha, Won-Shik
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.282-289
    • /
    • 2008
  • Although there were some technological developments in improving the collaborative filtering, they have yet to fully reflect the actual relation of the items. In this paper, we propose the recommendation system using associative web document classification by word frequency and ${\alpha}$-cut to address the short comings of the collaborative filtering. The proposed method extracts words from web documents through the morpheme analysis and accumulates the weight of term frequency. It makes associative rules and applies the weight of term frequency to its confidence by using Apriori algorithm. And it calculates the similarity among the words using the hypergraph partition. Lastly, it classifies related web document by using ${\alpha}$-cut and calculates similarity by using adjusted cosine similarity. The results show that the proposed method significantly outperforms the existing methods.

An Analysi s of Performance Improvement Algorithm for Personalized Recommender System (개인화 추천시스템의 성능 향상 적용 알고리즘 분석)

  • Yun Sujin;Yoon Heebyung
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.181-184
    • /
    • 2005
  • 무수히 많은 정보 중에서 특정 사용자에게 가장 유용할 것으로 판단되는 정보를 추천하여 제공함으로써 특정 사용자의 편의를 돕는 시스템이 추천시스템이다. 이러한 추천시스템에 성공적으로 적용된 알고리즘이 협력적 필터링이며 이것은 다른 사용자로부터 먼저 평가된 웹 문서를 제공받아 이를 축적하고 다시 사용자에게 환원하는 알고리즘이다. 하지만 이 알고리즘은 초기평가, 희소성, 확장성 둥의 문제점을 내포하고 있다. 따라서 본 논문은 이러한 문제점을 해결하고 성능 향상을 하기 위해 적용된 개인화 추천시스템 관련 최신 알고리즘들을 비교하고 분석한 결과를 제시한다. 이를 위해 먼저 최근에 발표된 협력적 필터링과 최근접 이웃 알고리즘, 인공 지능기술을 이용한 알고리즘, 군집화 알고리즘 둥 각각에 대한 기술적 분석 결과를 수행한다. 그런 후 이들 다양한 알고리즘들의 조합을 통한 성능 향상 결과에 대한 비교분석과 각각의 조합에 대한 장단점 분석 결과도 또한 제시한다.

  • PDF

Article Recommendation based on Latent Place Topic (장소에 내재된 토픽 기반 기사 추천)

  • Noh, Yunseok;Son, Jung-Woo;Park, Seong-Bae;Park, Se-Young;Lee, Sang-Jo
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.41-46
    • /
    • 2011
  • 스마트폰의 대중화와 함께 그에 내장된 GPS를 활용하여 컨텐츠를 제공하는 서비스들이 점차 늘어나고 있다. 그러나 이런 컨텐츠를 단지 위도, 경도 좌표 정보만을 기초로 구성하게 되면 실제 그 위치가 가지는 의미적 특성을 제대로 반영하지 못하게 된다. 사용자의 위치를 기반으로 그에 맞는 서비스를 제공하기 위해서는 장소의 토픽을 고려해야한다. 본 논문은 장소에 내재된 토픽을 바탕으로 한 기사 추천 방법을 제안한다. 장소와 관련된 문서로부터 장소의 토픽을 표현하고 그 토픽을 기사 추천에 이용한다. 제안한 방법이 실제로 장소에 내재된 토픽을 잘 반영함을 보이고 또한 이를 바탕으로 장소와 관련된 적합한 기사를 추천하는 것을 보여준다.

  • PDF